A platform for research: civil engineering, architecture and urbanism
The high-speed railway project and the ultra-high-voltage transmission project represent two crucial components of China’s “new infrastructure”. As the construction of these two projects progresses rapidly, it is inevitable that instances of intersections will occur. Extreme conditions may cause damage to ultra-high voltage transmission cables. When a high-speed train passes by an ultra-high voltage transmission line, it poses a serious safety hazard. To address this issue, engineering examples were utilized to examine the protection structure scheme, protection distance, protection load, and construction procedures when a high-speed railway intersects a 1000 KV ultra-high voltage transmission line. A shed structure form and construction method for the electric power protection were proposed to ensure the safe operation of the high-speed railway while also achieving the safe and rapid construction of the high-speed railway protection structure in the safety zone of the approaching 1000 kV ultra-high voltage transmission line. The results indicated that the protection of high-speed railway crossings and 1000 kV ultra-high voltage transmission lines primarily focuses on line-break protection. The concrete shed structure with a straight wall and a flat roof was designed to meet the requirements of high-speed railway crossings. The line-break protection method enables the construction of an automatic warning protection corridor and a complete movable trolley quickly and safely within the safety zone near the transmission line. The implementation effect is, therefore, positive. It can be used as a reference point for other projects of a similar nature.
The high-speed railway project and the ultra-high-voltage transmission project represent two crucial components of China’s “new infrastructure”. As the construction of these two projects progresses rapidly, it is inevitable that instances of intersections will occur. Extreme conditions may cause damage to ultra-high voltage transmission cables. When a high-speed train passes by an ultra-high voltage transmission line, it poses a serious safety hazard. To address this issue, engineering examples were utilized to examine the protection structure scheme, protection distance, protection load, and construction procedures when a high-speed railway intersects a 1000 KV ultra-high voltage transmission line. A shed structure form and construction method for the electric power protection were proposed to ensure the safe operation of the high-speed railway while also achieving the safe and rapid construction of the high-speed railway protection structure in the safety zone of the approaching 1000 kV ultra-high voltage transmission line. The results indicated that the protection of high-speed railway crossings and 1000 kV ultra-high voltage transmission lines primarily focuses on line-break protection. The concrete shed structure with a straight wall and a flat roof was designed to meet the requirements of high-speed railway crossings. The line-break protection method enables the construction of an automatic warning protection corridor and a complete movable trolley quickly and safely within the safety zone near the transmission line. The implementation effect is, therefore, positive. It can be used as a reference point for other projects of a similar nature.
Research on the Protection Scheme of a High-Speed Railway Crossing 1000 KV Ultra-High Voltage Transmission Line
2024
Article (Journal)
Electronic Resource
Unknown
Metadata by DOAJ is licensed under CC BY-SA 1.0
Reliability Calibration of Tower Members in Transmission Line System Crossing High-Speed Railway
DOAJ | 2022
|European Patent Office | 2020
|Crossing of High Speed Railway and A15 motorway viaduct
British Library Conference Proceedings | 2003
|European Patent Office | 2022
|Steel structure protective shed tunnel for crossing section of high-voltage power line and railway
European Patent Office | 2022
|