A platform for research: civil engineering, architecture and urbanism
Relationship between Park Composition, Vegetation Characteristics and Cool Island Effect
The Land Surface Temperature (LST) of a park is lower than the surrounding environment, and thus the parkland forms a Park Cool Island (PCI). However, more case studies are needed to reveal the relationship between park composition, vegetation characteristic and PCI development. The LST and Land Use/Land Cover (LULC) of 18 different sized parks in Changzhou, China were obtained from Landsat-8 and Mapworld Changzhou data. Then, a sample investigation method was used to calculate vegetation characteristics of these parks by an i-Tree Eco model. In order to reduce the impact from the external environment on PCI, the Temperature Drop Amplitude (TDA) and Temperature Drop Range (TR) inside the parks were analyzed by ArcGIS 9.3. Impact factors were tested by Pearson correlation analysis and curve fit to reveal the relationship between these factors and PCI formation. The result shows that a park area threshold of 1.34 to 17 hectares provides the best PCI effect, that park shape (perimeter/area), Leaf Area Index (LAI), density, tree cover, water cover, and impervious surface cover have significant correlation with PCI development, vegetation health and global climate change affect the PCI development. Advice is proposed to improve and maintain PCI effects.
Relationship between Park Composition, Vegetation Characteristics and Cool Island Effect
The Land Surface Temperature (LST) of a park is lower than the surrounding environment, and thus the parkland forms a Park Cool Island (PCI). However, more case studies are needed to reveal the relationship between park composition, vegetation characteristic and PCI development. The LST and Land Use/Land Cover (LULC) of 18 different sized parks in Changzhou, China were obtained from Landsat-8 and Mapworld Changzhou data. Then, a sample investigation method was used to calculate vegetation characteristics of these parks by an i-Tree Eco model. In order to reduce the impact from the external environment on PCI, the Temperature Drop Amplitude (TDA) and Temperature Drop Range (TR) inside the parks were analyzed by ArcGIS 9.3. Impact factors were tested by Pearson correlation analysis and curve fit to reveal the relationship between these factors and PCI formation. The result shows that a park area threshold of 1.34 to 17 hectares provides the best PCI effect, that park shape (perimeter/area), Leaf Area Index (LAI), density, tree cover, water cover, and impervious surface cover have significant correlation with PCI development, vegetation health and global climate change affect the PCI development. Advice is proposed to improve and maintain PCI effects.
Relationship between Park Composition, Vegetation Characteristics and Cool Island Effect
Xinjun Wang (author) / Haoming Cheng (author) / Juan Xi (author) / Guoying Yang (author) / Yanwen Zhao (author)
2018
Article (Journal)
Electronic Resource
Unknown
Metadata by DOAJ is licensed under CC BY-SA 1.0
Measurement of Cool Island Effect of Shinjuku Gyoen Park
British Library Conference Proceedings | 2000
|DOAJ | 2017
|VEGETATION COMPOSITION ON ECOLOGICAL FUNCTION IN MATARAM MERAH PARK, JAKARTA
BASE | 2021
|