A platform for research: civil engineering, architecture and urbanism
Sulfation–Roasting–Leaching–Precipitation Processes for Selective Recovery of Erbium from Bottom Ash
Bottom ash (BA) is mainly composed of compounds of Al, Fe, Ca, and traces of rare earth elements (REEs). In this study, the selective recovery of erbium (Er) as REEs by means of sulfation–roasting–leaching–precipitation (SRLP) using BA was investigated. A pre-treatment process of sulfation and roasting of BA was developed to selectively recover REEs using ammonium oxalate leaching (AOL) followed by precipitation. Most of the oxides were converted to their respective sulfates during sulfation. By roasting, unstable sulfates (mostly iron) decomposed into oxides, while the REE sulfates remained stable. Roasting above 600 °C induces the formation of oxy-sulfates that are almost insoluble during AOL. Dissolved REEs precipitate after 7 days at room temperature. The effects of particle size, roasting temperature, leaching time, and AOL concentration were the important parameters studied. The optimal conditions of +100–500 μm particles roasted at 500 °C were found to leach 36.15% of total REEs in 2 h 30 min and 94.24% of the leached REEs were recovered by precipitation. A total of 97.21% of Fe and 94.13% of Al could be separated from Er.
Sulfation–Roasting–Leaching–Precipitation Processes for Selective Recovery of Erbium from Bottom Ash
Bottom ash (BA) is mainly composed of compounds of Al, Fe, Ca, and traces of rare earth elements (REEs). In this study, the selective recovery of erbium (Er) as REEs by means of sulfation–roasting–leaching–precipitation (SRLP) using BA was investigated. A pre-treatment process of sulfation and roasting of BA was developed to selectively recover REEs using ammonium oxalate leaching (AOL) followed by precipitation. Most of the oxides were converted to their respective sulfates during sulfation. By roasting, unstable sulfates (mostly iron) decomposed into oxides, while the REE sulfates remained stable. Roasting above 600 °C induces the formation of oxy-sulfates that are almost insoluble during AOL. Dissolved REEs precipitate after 7 days at room temperature. The effects of particle size, roasting temperature, leaching time, and AOL concentration were the important parameters studied. The optimal conditions of +100–500 μm particles roasted at 500 °C were found to leach 36.15% of total REEs in 2 h 30 min and 94.24% of the leached REEs were recovered by precipitation. A total of 97.21% of Fe and 94.13% of Al could be separated from Er.
Sulfation–Roasting–Leaching–Precipitation Processes for Selective Recovery of Erbium from Bottom Ash
Josiane Ponou (author) / Marisol Garrouste (author) / Gjergj Dodbiba (author) / Toyohisa Fujita (author) / Ji-Whan Ahn (author)
2019
Article (Journal)
Electronic Resource
Unknown
Metadata by DOAJ is licensed under CC BY-SA 1.0
British Library Online Contents | 2012
|Chloridizing blast roasting and leaching
Engineering Index Backfile | 1915
|British Library Online Contents | 2012
|Taylor & Francis Verlag | 2021
|