A platform for research: civil engineering, architecture and urbanism
Spatiotemporal Features—Extracted Travel Time Prediction Leveraging Deep-Learning-Enabled Graph Convolutional Neural Network Model
Travel time prediction is one of the most important parameters to forecast network-wide traffic conditions. Travelers can access traffic roadway networks and arrive in their destinations at the lowest costs guided by accurate travel time estimation on alternative routes. In this study, we propose a long short-term memory (LSTM)-based deep learning model, deep learning on spatiotemporal features with Convolution Neural Network (DLSF-CNN), to extract the spatial–temporal correlation of travel time on different routes to accurately predict route travel time. Specifically, this model utilizes network-wide travel time, considering its topological structure as inputs, and combines convolutional neural network and LSTM techniques to accurately predict travel time. In addition to their spatial dependence, both coarse-grained and fine-grained temporal dependences are fully considered among the road segments along a route as well. The shift problem is formulated in the coarse-grained granularity to predict the route travel time in the next time interval. The experimental tests were conducted using real route travel time obtained by taxi trajectories in Harbin. The test results show that the travel time prediction accuracy of DLSF-CNN is above 90%. Meanwhile, the proposed model outperformed the other machine learning models based on multiple evaluation criteria. The RMSE (Root Mean Squard Error) and R2 (R Squared) increased by 18.6% and 22.46%, respectively. The results indicate the proposed model performs reasonably well under prevailing traffic conditions.
Spatiotemporal Features—Extracted Travel Time Prediction Leveraging Deep-Learning-Enabled Graph Convolutional Neural Network Model
Travel time prediction is one of the most important parameters to forecast network-wide traffic conditions. Travelers can access traffic roadway networks and arrive in their destinations at the lowest costs guided by accurate travel time estimation on alternative routes. In this study, we propose a long short-term memory (LSTM)-based deep learning model, deep learning on spatiotemporal features with Convolution Neural Network (DLSF-CNN), to extract the spatial–temporal correlation of travel time on different routes to accurately predict route travel time. Specifically, this model utilizes network-wide travel time, considering its topological structure as inputs, and combines convolutional neural network and LSTM techniques to accurately predict travel time. In addition to their spatial dependence, both coarse-grained and fine-grained temporal dependences are fully considered among the road segments along a route as well. The shift problem is formulated in the coarse-grained granularity to predict the route travel time in the next time interval. The experimental tests were conducted using real route travel time obtained by taxi trajectories in Harbin. The test results show that the travel time prediction accuracy of DLSF-CNN is above 90%. Meanwhile, the proposed model outperformed the other machine learning models based on multiple evaluation criteria. The RMSE (Root Mean Squard Error) and R2 (R Squared) increased by 18.6% and 22.46%, respectively. The results indicate the proposed model performs reasonably well under prevailing traffic conditions.
Spatiotemporal Features—Extracted Travel Time Prediction Leveraging Deep-Learning-Enabled Graph Convolutional Neural Network Model
Xiantong Li (author) / Hua Wang (author) / Pengcheng Sun (author) / Hongquan Zu (author)
2021
Article (Journal)
Electronic Resource
Unknown
Metadata by DOAJ is licensed under CC BY-SA 1.0
American Institute of Physics | 2022
|Rockburst Prediction via Multiscale Graph Convolutional Neural Network
Springer Verlag | 2025
|Multi-site solar irradiance prediction based on hybrid spatiotemporal graph neural network
American Institute of Physics | 2024
|