A platform for research: civil engineering, architecture and urbanism
Feasibility of Grid-connected Solar-wind Hybrid System with Electric Vehicle Charging Station
Recently, renewable power generation and electric vehicles (EVs) have been attracting more and more attention in smart grid. This paper presents a grid-connected solar-wind hybrid system to supply the electrical load demand of a small shopping complex located in a university campus in India. Further., an EV charging station is incorporated in the system. Economic analysis is performed for the proposed setup to satisfy the charging demand of EVs as well as the electrical load demand of the shopping complex. The proposed system is designed by considering the cost of the purchased energy, which is sold to the utility grid, while the power exchange is ensured between the utility grid and other components of the system. The sizing of the component is performed to obtain the least levelized cost of electricity (LCOE) while minimizing the loss of power supply probability (LPSP) by using recent optimization techniques. The results demonstrate that the LCOE and LPSP for the proposed system are measured at 0.038 $/kWh and 0.19% with a renewable fraction of 0.87, respectively. It is determined that a cost-effective and reliable system can be designed by the proper management of renewable power generation and load demands. The proposed system may be helpful in reducing the reliance on the over-burdened grid, particularly in developing countries.
Feasibility of Grid-connected Solar-wind Hybrid System with Electric Vehicle Charging Station
Recently, renewable power generation and electric vehicles (EVs) have been attracting more and more attention in smart grid. This paper presents a grid-connected solar-wind hybrid system to supply the electrical load demand of a small shopping complex located in a university campus in India. Further., an EV charging station is incorporated in the system. Economic analysis is performed for the proposed setup to satisfy the charging demand of EVs as well as the electrical load demand of the shopping complex. The proposed system is designed by considering the cost of the purchased energy, which is sold to the utility grid, while the power exchange is ensured between the utility grid and other components of the system. The sizing of the component is performed to obtain the least levelized cost of electricity (LCOE) while minimizing the loss of power supply probability (LPSP) by using recent optimization techniques. The results demonstrate that the LCOE and LPSP for the proposed system are measured at 0.038 $/kWh and 0.19% with a renewable fraction of 0.87, respectively. It is determined that a cost-effective and reliable system can be designed by the proper management of renewable power generation and load demands. The proposed system may be helpful in reducing the reliance on the over-burdened grid, particularly in developing countries.
Feasibility of Grid-connected Solar-wind Hybrid System with Electric Vehicle Charging Station
Shakti Singh (author) / Prachi Chauhan (author) / Nirbhow Jap Singh (author)
2021
Article (Journal)
Electronic Resource
Unknown
Metadata by DOAJ is licensed under CC BY-SA 1.0
Novel solar powered electric vehicle charging station with the capability of vehicle-to-grid
British Library Online Contents | 2017
|Feasibility analysis of using solar, wind and wave energy to power electric charging station
BASE | 2020
|