A platform for research: civil engineering, architecture and urbanism
Consideration of reflected wavesas part of analysis of plane elements Учет отраженных волн при расчете плоских элементов
The authors study the distribution pattern of wave surfaces inside the orthotropic plate having curvilinear anisotropy. Dynamic behavior of the target is described by wave equations taking account of the transverse shear and rotational inertia of transverse cross-sections and of the ability to simulate the process of propagation of elastic waves. These equations are solved using the asymptotic method employed for decomposition of unknown values into time and spatial value series.The problem is resolved to identify the stress values in the points of interaction between direct waves and those reflected by the bottom face of the plate. Description of patterns of propagation of wave fronts inside the target requires a clear understanding of the nature of each wave, its velocity, etc.The research completed by the co-authors has proven that any increase in the thickness of a plate increases maximal stresses in the area of wave formation, while stresses in points of interaction between elastic waves go down, and peak stresses involving transverse waves go down more intensively. Nonetheless, any encounter between direct and reflected waves may either increase, or reduce the final values of principal stresses.The methodology developed by the authors may be employed to identify the coordinates of the points of maximal stresses occurring in medium thickness reinforced orthotropic plates. Awareness of these coordinates makes it possible to identify the appropriate diameter and patterns of arrangement of reinforcing elements.
Исследовано распространение волновых поверхностей в ортотропной пластинке, обладающей криволинейной анизотропией. Динамическое поведение мишени описано волновыми уравнениями, учитывающими поперечный сдвиг и инерцию вращения поперечных сечений и позволяющими моделировать процесс распространения упругих волн. В качестве метода решения этих уравнений использован асимптотический метод разложения неизвестных величин в ряды по времени и пространственной координате. В задаче определены напряжения в отдельных точках мишени и местах взаимодействия прямой и отраженной от нижней грани пластинки волн.
Consideration of reflected wavesas part of analysis of plane elements Учет отраженных волн при расчете плоских элементов
The authors study the distribution pattern of wave surfaces inside the orthotropic plate having curvilinear anisotropy. Dynamic behavior of the target is described by wave equations taking account of the transverse shear and rotational inertia of transverse cross-sections and of the ability to simulate the process of propagation of elastic waves. These equations are solved using the asymptotic method employed for decomposition of unknown values into time and spatial value series.The problem is resolved to identify the stress values in the points of interaction between direct waves and those reflected by the bottom face of the plate. Description of patterns of propagation of wave fronts inside the target requires a clear understanding of the nature of each wave, its velocity, etc.The research completed by the co-authors has proven that any increase in the thickness of a plate increases maximal stresses in the area of wave formation, while stresses in points of interaction between elastic waves go down, and peak stresses involving transverse waves go down more intensively. Nonetheless, any encounter between direct and reflected waves may either increase, or reduce the final values of principal stresses.The methodology developed by the authors may be employed to identify the coordinates of the points of maximal stresses occurring in medium thickness reinforced orthotropic plates. Awareness of these coordinates makes it possible to identify the appropriate diameter and patterns of arrangement of reinforcing elements.
Исследовано распространение волновых поверхностей в ортотропной пластинке, обладающей криволинейной анизотропией. Динамическое поведение мишени описано волновыми уравнениями, учитывающими поперечный сдвиг и инерцию вращения поперечных сечений и позволяющими моделировать процесс распространения упругих волн. В качестве метода решения этих уравнений использован асимптотический метод разложения неизвестных величин в ряды по времени и пространственной координате. В задаче определены напряжения в отдельных точках мишени и местах взаимодействия прямой и отраженной от нижней грани пластинки волн.
Consideration of reflected wavesas part of analysis of plane elements Учет отраженных волн при расчете плоских элементов
Loktev Aleksey Alekseevich (author) / Stepanov Roman Nikolaevich (author)
2013
Article (Journal)
Electronic Resource
Unknown
elastic waves , direct and reflected waves , wave equation , boundary conditions , dynamic characteristics , expansions in series , principal stresses , упругие волны , прямые и отраженные волны , волновые уравнения , граничные условия , динамические характеристики , разложения в ряды , главные напряжения , Architecture , NA1-9428 , Construction industry , HD9715-9717.5
Metadata by DOAJ is licensed under CC BY-SA 1.0
Применение численного моделирования в расчете гидрометрических сооружений в открытых руслах
DOAJ | 2018
|