A platform for research: civil engineering, architecture and urbanism
Mobility of nZVI in a Reconstructed Porous Media Monitored by an Image Analysis Procedure
Zero-valent iron nanoparticle (nZVI) technology has been found to be promising and effective for the remediation of soils or groundwater. However, while nanoparticles are traveling through porous media, they can rapidly aggregate, causing their settling and deposition. When nZVI are injected in the groundwater flow, the behavior (mobility, dispersion, distribution) is unknown in groundwater, causing the use of enormous quantities of them if used at the field scale. In this paper, a laboratory experiment was carried out with groundwater flow in a two-dimensional, laboratory-scale tank to assess the nanoparticle behavior by means of an image analysis procedure. A solution of zero-valent iron nanoparticles, Nanofer 25S particles, were used and glass beads were utilized as porous medium. The laboratory experiment included the use of a digital camera for the acquisition of the images. The image analysis procedure was used to assess the behavior of nZVI plume. A calibration procedure and a mass balance were applied to validate the proposed image analysis procedure, with the hypothesis that nanoparticles would be uniformly distributed in the third dimension of the tank (thickness). The results show that the nanoparticles presented small dispersive effects and the motion was strongly influenced from the higher weight of them with respect to the water. Therefore, the results indicate that nanoparticles have an own motion not strongly influenced by the fluid flow but more determined from the injection phase and gravity. The statistical elaborations show that the nZVI plume did not respond to the classical mechanisms of the dispersion.
Mobility of nZVI in a Reconstructed Porous Media Monitored by an Image Analysis Procedure
Zero-valent iron nanoparticle (nZVI) technology has been found to be promising and effective for the remediation of soils or groundwater. However, while nanoparticles are traveling through porous media, they can rapidly aggregate, causing their settling and deposition. When nZVI are injected in the groundwater flow, the behavior (mobility, dispersion, distribution) is unknown in groundwater, causing the use of enormous quantities of them if used at the field scale. In this paper, a laboratory experiment was carried out with groundwater flow in a two-dimensional, laboratory-scale tank to assess the nanoparticle behavior by means of an image analysis procedure. A solution of zero-valent iron nanoparticles, Nanofer 25S particles, were used and glass beads were utilized as porous medium. The laboratory experiment included the use of a digital camera for the acquisition of the images. The image analysis procedure was used to assess the behavior of nZVI plume. A calibration procedure and a mass balance were applied to validate the proposed image analysis procedure, with the hypothesis that nanoparticles would be uniformly distributed in the third dimension of the tank (thickness). The results show that the nanoparticles presented small dispersive effects and the motion was strongly influenced from the higher weight of them with respect to the water. Therefore, the results indicate that nanoparticles have an own motion not strongly influenced by the fluid flow but more determined from the injection phase and gravity. The statistical elaborations show that the nZVI plume did not respond to the classical mechanisms of the dispersion.
Mobility of nZVI in a Reconstructed Porous Media Monitored by an Image Analysis Procedure
Francesca Andrei (author) / Giuseppe Sappa (author) / Maria Rosaria Boni (author) / Giuseppe Mancini (author) / Paolo Viotti (author)
2021
Article (Journal)
Electronic Resource
Unknown
Metadata by DOAJ is licensed under CC BY-SA 1.0
Viscous flow in three-dimensional reconstructed porous media
British Library Online Contents | 2003
|Prediction of Transport Properties in Reconstructed Unconsolidated Porous Media
British Library Conference Proceedings | 2010
|DOAJ | 2022
|Reductive Sequestration of Chromate with Pyrite-Loaded nZVI@biochar Composites
DOAJ | 2024
|