A platform for research: civil engineering, architecture and urbanism
Thermodynamic Study of Phosphate Adsorption and Removal from Water Using Iron Oxyhydroxides
Iron oxyhydroxides (FeOOHs) appear to be the optimal group of materials among inorganic adsorbents for the removal of phosphates from water, providing significant adsorption capacities. This research work presents a thermodynamic study of phosphate adsorption by examining five different FeOOHs sorbent nanomaterials. The otablebtained results indicated that the adsorption process in these cases was spontaneous. When the experiments were performed using distilled water, akageneite (GEH), schwertmannite, and tetravalent manganese feroxyhyte (AquAsZero), displaying ΔH° values of 31.2, 34.7, and 7.3 kJ/mole, respectively, presented an endothermic adsorption process, whereas for goethite (Bayoxide) and lepidocrocite, with ΔH° values of −11.4 and −7.7 kJ/mole, respectively, the adsorption process proved to be exothermic. However, when an artificial (according to NSF) water matrix was used, GEH, schwertmannite, lepidocrocite, and AquAsZero presented ΔH° values of 13.2, 3.3, 7.7, and 3.3 kJ/mole, respectively, indicative of an endothermic process, while only for Bayoxide, with ΔH° of −17 kJ/mole, the adsorption remained exothermic. The adsorption enthalpy values generally decreased with the NSF water matrix, probably due to the competition for the same adsorption sites by other co-existing anions as well to the possible formation of soluble phosphate complexes with calcium; however, an overall positive effect on the uptake of phosphates was observed.
Thermodynamic Study of Phosphate Adsorption and Removal from Water Using Iron Oxyhydroxides
Iron oxyhydroxides (FeOOHs) appear to be the optimal group of materials among inorganic adsorbents for the removal of phosphates from water, providing significant adsorption capacities. This research work presents a thermodynamic study of phosphate adsorption by examining five different FeOOHs sorbent nanomaterials. The otablebtained results indicated that the adsorption process in these cases was spontaneous. When the experiments were performed using distilled water, akageneite (GEH), schwertmannite, and tetravalent manganese feroxyhyte (AquAsZero), displaying ΔH° values of 31.2, 34.7, and 7.3 kJ/mole, respectively, presented an endothermic adsorption process, whereas for goethite (Bayoxide) and lepidocrocite, with ΔH° values of −11.4 and −7.7 kJ/mole, respectively, the adsorption process proved to be exothermic. However, when an artificial (according to NSF) water matrix was used, GEH, schwertmannite, lepidocrocite, and AquAsZero presented ΔH° values of 13.2, 3.3, 7.7, and 3.3 kJ/mole, respectively, indicative of an endothermic process, while only for Bayoxide, with ΔH° of −17 kJ/mole, the adsorption remained exothermic. The adsorption enthalpy values generally decreased with the NSF water matrix, probably due to the competition for the same adsorption sites by other co-existing anions as well to the possible formation of soluble phosphate complexes with calcium; however, an overall positive effect on the uptake of phosphates was observed.
Thermodynamic Study of Phosphate Adsorption and Removal from Water Using Iron Oxyhydroxides
Kyriaki Kalaitzidou (author) / Anastasios Zouboulis (author) / Manassis Mitrakas (author)
2022
Article (Journal)
Electronic Resource
Unknown
Metadata by DOAJ is licensed under CC BY-SA 1.0
British Library Online Contents | 2003
|EXAFS characterization of ferric oxyhydroxides
British Library Online Contents | 2001
|Energetics of Stable and Metastable Low-Temperature Iron Oxides and Oxyhydroxides
British Library Conference Proceedings | 1998
|Chemical imaging of iron oxides and oxyhydroxides using near infrared Rantan imaging microscopy
British Library Online Contents | 2001
|Influence of manganese on iron oxyhydroxides and oxides formed in aqueous solution
British Library Online Contents | 2008
|