A platform for research: civil engineering, architecture and urbanism
Potential Hormetic Effects of Cimetidine on Aerobic Composting of Human Feces from Rural China
Aerobic composting is widely used worldwide as a natural process for handling human waste. Such waste often contains pharmaceutical residues from human consumption, yet their impact on composting has not been studied. The aim of this study is to investigate the impact of the antihistamine cimetidine (10 mg/kg, 100 mg/kg) on the aerobic composting of human feces. The key results show that 10 mg/kg of cimetidine accelerates temperature increase and moisture removal of the composting substrate. The organic matter in all the groups gradually decreased, and the pH values increased first and then declined with the composting time, with no significant differences between the groups. The NH4+-N concentrations and NH3 emission reached the maximum at 1.5 days and then declined rapidly, while the NO2−-N concentrations increased and then decreased, and the NO3−-N contents tended to increase all the time during the composting. The 100 mg/kg cimetidine caused a higher maximal NH4+-N concentration of compost, and a lower maximal NH3 emission at 1.5 days, while 10 mg/kg cimetidine led to more NO2−-N and NO3−-N contents. In addition, 10 mg/kg cimetidine enhanced the aromatization and humification of dissolved organic matter and promoted the degradation of aliphatic substances. Furthermore, 100 mg/kg cimetidine generated a larger influence on the microorganisms than 10 mg/kg cimetidine, especially for the microorganisms related to nitrogen transformation. The findings imply that cimetidine has a dose-dependent impact on the decomposition of organic matter and the conversion of nitrogen in human feces during composting. It deserves further investigation of the possible hormesis effect.
Potential Hormetic Effects of Cimetidine on Aerobic Composting of Human Feces from Rural China
Aerobic composting is widely used worldwide as a natural process for handling human waste. Such waste often contains pharmaceutical residues from human consumption, yet their impact on composting has not been studied. The aim of this study is to investigate the impact of the antihistamine cimetidine (10 mg/kg, 100 mg/kg) on the aerobic composting of human feces. The key results show that 10 mg/kg of cimetidine accelerates temperature increase and moisture removal of the composting substrate. The organic matter in all the groups gradually decreased, and the pH values increased first and then declined with the composting time, with no significant differences between the groups. The NH4+-N concentrations and NH3 emission reached the maximum at 1.5 days and then declined rapidly, while the NO2−-N concentrations increased and then decreased, and the NO3−-N contents tended to increase all the time during the composting. The 100 mg/kg cimetidine caused a higher maximal NH4+-N concentration of compost, and a lower maximal NH3 emission at 1.5 days, while 10 mg/kg cimetidine led to more NO2−-N and NO3−-N contents. In addition, 10 mg/kg cimetidine enhanced the aromatization and humification of dissolved organic matter and promoted the degradation of aliphatic substances. Furthermore, 100 mg/kg cimetidine generated a larger influence on the microorganisms than 10 mg/kg cimetidine, especially for the microorganisms related to nitrogen transformation. The findings imply that cimetidine has a dose-dependent impact on the decomposition of organic matter and the conversion of nitrogen in human feces during composting. It deserves further investigation of the possible hormesis effect.
Potential Hormetic Effects of Cimetidine on Aerobic Composting of Human Feces from Rural China
Xiaowei Li (author) / Xuan Wang (author) / Xusheng Pan (author) / Ping Zhu (author) / Qianzhi Zhang (author) / Xiang Huang (author) / Xiuquan Deng (author) / Zhipu Wang (author) / Yao Ding (author) / Ximing Liu (author)
2022
Article (Journal)
Electronic Resource
Unknown
Metadata by DOAJ is licensed under CC BY-SA 1.0
British Library Conference Proceedings | 2011
|Alleviation of the Effect of Antibiotics on the Aerobic Biodegradation of Feces in Composting Toilet
British Library Conference Proceedings | 2008
|Elsevier | 1990
Clinical Anti-Aging Hormetic Strategies
British Library Online Contents | 2005
|