A platform for research: civil engineering, architecture and urbanism
The days of plenty might soon be over in glacierized Central Asian catchments
Despite the fact that the fast-growing population of Central Asia strongly depends on glacial melt water for fresh water supply, irrigation and hydropower production, the impact of glacier shrinkage on water availability remains poorly understood. With an annual area loss of 0.36 to 0.76%, glaciers are retreating particularly fast in the northern Tien Shan, thus causing concern about future water security in the densely populated regions of Bishkek and Almaty. Here, we use exceptionally long in-situ data series to run and calibrate a distributed glacio-hydrological model, which we then force with downscaled data from phase five of the Climate Model Intercomparison Project CMIP5. We observe that even in the most glacier-friendly scenario, glaciers will lose up to two thirds (−60%) of their 1955 extent by the end of the 21st century. The range of climate scenarios translates into different changes in overall water availability, from peak water being reached in the 2020s over a gradual decrease to status quo until the end of the 21st century. The days of plenty, however, will not last much longer, as summer runoff is projected to decrease, independent of scenario uncertainty. These results highlight the need for immediate planning of mitigation measures in the agricultural and energy sectors to assure long-term water security in the densely populated forelands of the Tien Shan.
The days of plenty might soon be over in glacierized Central Asian catchments
Despite the fact that the fast-growing population of Central Asia strongly depends on glacial melt water for fresh water supply, irrigation and hydropower production, the impact of glacier shrinkage on water availability remains poorly understood. With an annual area loss of 0.36 to 0.76%, glaciers are retreating particularly fast in the northern Tien Shan, thus causing concern about future water security in the densely populated regions of Bishkek and Almaty. Here, we use exceptionally long in-situ data series to run and calibrate a distributed glacio-hydrological model, which we then force with downscaled data from phase five of the Climate Model Intercomparison Project CMIP5. We observe that even in the most glacier-friendly scenario, glaciers will lose up to two thirds (−60%) of their 1955 extent by the end of the 21st century. The range of climate scenarios translates into different changes in overall water availability, from peak water being reached in the 2020s over a gradual decrease to status quo until the end of the 21st century. The days of plenty, however, will not last much longer, as summer runoff is projected to decrease, independent of scenario uncertainty. These results highlight the need for immediate planning of mitigation measures in the agricultural and energy sectors to assure long-term water security in the densely populated forelands of the Tien Shan.
The days of plenty might soon be over in glacierized Central Asian catchments
Annina Sorg (author) / Matthias Huss (author) / Mario Rohrer (author) / Markus Stoffel (author)
2014
Article (Journal)
Electronic Resource
Unknown
Metadata by DOAJ is licensed under ​CC BY-SA 1.0
British Library Conference Proceedings | 2010
|Hydrological Modeling of Highly Glacierized Basins (Andes, Alps, and Central Asia)
DOAJ | 2017
|Future runoff from a partly glacierized watershed in Central Switzerland: A two-model approach
British Library Online Contents | 2013
|