A platform for research: civil engineering, architecture and urbanism
Soil Water Content and Temperature Dynamics under Grassland Degradation: A Multi-Depth Continuous Measurement from the Agricultural Pastoral Ecotone in Northwest China
The agricultural pastoral ecotone (APE) in Northwest China is an ecological transition zone in the arid area with a very fragile ecosystem. In recent years, the ecosystem has deteriorated sharply, and increasing desertification has made the regional ecosystem more vulnerable and sensitive. In this study, we analyzed (using classical statistical methods) spatial and temporal variations in soil water content (SWC) from 14 September 2016 to 22 April 2019 for high and low vegetation in two grassland sites in Yanchi County, Ningxia. The results showed that the largest average seasonal SWC occurred in autumn. The SWC of the first three layers (0 ÷ 15 cm) of the soil profile responded strongly to precipitation, whereas the SWC in deeper soil (30 ÷ 50 cm) could only be recharged markedly after continuous precipitation. Additionally, the growing process of plants proved to be a cause of variability in soil moisture profiles. Vegetation degradation sped up the course of desertification and decreased soil organic carbon content. These changes left the soil increasingly desiccated and enhanced soil variability. Meanwhile, vegetation degradation also prompted changes in soil temperature and shortened the soil’s frozen time in winter. With the acceleration of global warming, if the process of vegetation degeneration continues and soil temperatures keep rising, the ecosystem is likely to undergo irreversible degradation.
Soil Water Content and Temperature Dynamics under Grassland Degradation: A Multi-Depth Continuous Measurement from the Agricultural Pastoral Ecotone in Northwest China
The agricultural pastoral ecotone (APE) in Northwest China is an ecological transition zone in the arid area with a very fragile ecosystem. In recent years, the ecosystem has deteriorated sharply, and increasing desertification has made the regional ecosystem more vulnerable and sensitive. In this study, we analyzed (using classical statistical methods) spatial and temporal variations in soil water content (SWC) from 14 September 2016 to 22 April 2019 for high and low vegetation in two grassland sites in Yanchi County, Ningxia. The results showed that the largest average seasonal SWC occurred in autumn. The SWC of the first three layers (0 ÷ 15 cm) of the soil profile responded strongly to precipitation, whereas the SWC in deeper soil (30 ÷ 50 cm) could only be recharged markedly after continuous precipitation. Additionally, the growing process of plants proved to be a cause of variability in soil moisture profiles. Vegetation degradation sped up the course of desertification and decreased soil organic carbon content. These changes left the soil increasingly desiccated and enhanced soil variability. Meanwhile, vegetation degradation also prompted changes in soil temperature and shortened the soil’s frozen time in winter. With the acceleration of global warming, if the process of vegetation degeneration continues and soil temperatures keep rising, the ecosystem is likely to undergo irreversible degradation.
Soil Water Content and Temperature Dynamics under Grassland Degradation: A Multi-Depth Continuous Measurement from the Agricultural Pastoral Ecotone in Northwest China
Wenjing Yang (author) / Yibo Wang (author) / Chansheng He (author) / Xingyan Tan (author) / Zhibo Han (author)
2019
Article (Journal)
Electronic Resource
Unknown
Metadata by DOAJ is licensed under CC BY-SA 1.0
DOAJ | 2022
|DOAJ | 2020
|