A platform for research: civil engineering, architecture and urbanism
The Impact of Climate Change on Hydroecological Response in Chalk Streams
Climate change represents a major threat to lotic freshwater ecosystems and their ability to support the provision of ecosystem services. England’s chalk streams are in a poor state of health, with significant concerns regarding their resilience, the ability to adapt, under a changing climate. This paper aims to quantify the effect of climate change on hydroecological response for the River Nar, south-east England. To this end, we apply a coupled hydrological and hydroecological modelling framework, with the UK probabilistic climate projections 2009 (UKCP09) weather generator serving as input (CMIP3 A1B high emissions scenario, 2021 to the end-of-century). The results indicate a minimal change in the long-term mean hydroecological response over this period. In terms of interannual variability, the median hydroecological response is subject to increased uncertainty, whilst lower probability extremes are virtually certain to become more homogeneous (assuming a high emissions scenario). A functional matrix, relating species-level macroinvertebrate functional flow preferences to functional food groups reveals that, on the baseline, under extreme conditions, key groups are underrepresented. To date, despite this limited range, the River Nar has been able to adapt to extreme events due to interannual variation. In the future, this variation is greatly reduced, raising real concerns over the resilience of the river ecosystem, and chalk ecosystems more generally, under climate change.
The Impact of Climate Change on Hydroecological Response in Chalk Streams
Climate change represents a major threat to lotic freshwater ecosystems and their ability to support the provision of ecosystem services. England’s chalk streams are in a poor state of health, with significant concerns regarding their resilience, the ability to adapt, under a changing climate. This paper aims to quantify the effect of climate change on hydroecological response for the River Nar, south-east England. To this end, we apply a coupled hydrological and hydroecological modelling framework, with the UK probabilistic climate projections 2009 (UKCP09) weather generator serving as input (CMIP3 A1B high emissions scenario, 2021 to the end-of-century). The results indicate a minimal change in the long-term mean hydroecological response over this period. In terms of interannual variability, the median hydroecological response is subject to increased uncertainty, whilst lower probability extremes are virtually certain to become more homogeneous (assuming a high emissions scenario). A functional matrix, relating species-level macroinvertebrate functional flow preferences to functional food groups reveals that, on the baseline, under extreme conditions, key groups are underrepresented. To date, despite this limited range, the River Nar has been able to adapt to extreme events due to interannual variation. In the future, this variation is greatly reduced, raising real concerns over the resilience of the river ecosystem, and chalk ecosystems more generally, under climate change.
The Impact of Climate Change on Hydroecological Response in Chalk Streams
Annie Visser (author) / Lindsay Beevers (author) / Sandhya Patidar (author)
2019
Article (Journal)
Electronic Resource
Unknown
Metadata by DOAJ is licensed under CC BY-SA 1.0
Scales of Hydroecological Variability Within a Groundwater-Dominated Stream
British Library Conference Proceedings | 2001
|Arena - Scales of Hydroecological Variability Within a Groundwater-Dominated Stream
Online Contents | 2001
|British Library Conference Proceedings | 2010
|Scales of Hydroecological Variability Within a Groundwater-Dominated Stream
British Library Online Contents | 2001
|