A platform for research: civil engineering, architecture and urbanism
Diurnal Impact of Below-Cloud Evaporation on Isotope Compositions of Precipitation on the Southern Slope of the Altai Mountains, Central Asia
Precipitation is an important natural resource relating to regional sustainability in arid central Asia, and the stable oxygen and hydrogen isotopes provide useful tracers to understand precipitation processes. In this study, we collected the hourly meteorological data at several stations on the southern slope of the Altai Mountains in arid central Asia, from March 2017 to June 2022, and examined the diurnal impact of below-cloud evaporation on stable isotope compositions of precipitation. During nighttime, the changes in isotope compositions below cloud base are generally weak. The enhanced impact of below-cloud evaporation can be found after around 15:00, and the impact is relatively strong in the afternoon, especially from 18:00 to 22:00. Summer and spring usually have a larger impact of below-cloud evaporation than autumn, and the winter precipitation is generally not influenced by below-cloud evaporation. On an annual basis, the differences in evaporation-led isotope changes between daytime and nighttime are 1.1‰ for stable oxygen isotope compositions, 4.0‰ for stable hydrogen isotope compositions and 4.7‰ for deuterium excess. The period from 2:00 to 10:00 shows relatively low sensitivity to relative humidity, and from 14:00 to 22:00 the impacts are sensitive. Considering the fluctuations of precipitation isotope compositions, the impact of below-cloud evaporation does not greatly modify the seasonal environmental signals.
Diurnal Impact of Below-Cloud Evaporation on Isotope Compositions of Precipitation on the Southern Slope of the Altai Mountains, Central Asia
Precipitation is an important natural resource relating to regional sustainability in arid central Asia, and the stable oxygen and hydrogen isotopes provide useful tracers to understand precipitation processes. In this study, we collected the hourly meteorological data at several stations on the southern slope of the Altai Mountains in arid central Asia, from March 2017 to June 2022, and examined the diurnal impact of below-cloud evaporation on stable isotope compositions of precipitation. During nighttime, the changes in isotope compositions below cloud base are generally weak. The enhanced impact of below-cloud evaporation can be found after around 15:00, and the impact is relatively strong in the afternoon, especially from 18:00 to 22:00. Summer and spring usually have a larger impact of below-cloud evaporation than autumn, and the winter precipitation is generally not influenced by below-cloud evaporation. On an annual basis, the differences in evaporation-led isotope changes between daytime and nighttime are 1.1‰ for stable oxygen isotope compositions, 4.0‰ for stable hydrogen isotope compositions and 4.7‰ for deuterium excess. The period from 2:00 to 10:00 shows relatively low sensitivity to relative humidity, and from 14:00 to 22:00 the impacts are sensitive. Considering the fluctuations of precipitation isotope compositions, the impact of below-cloud evaporation does not greatly modify the seasonal environmental signals.
Diurnal Impact of Below-Cloud Evaporation on Isotope Compositions of Precipitation on the Southern Slope of the Altai Mountains, Central Asia
Shengjie Wang (author) / Lihong Duan (author) / Yijie Xia (author) / Deye Qu (author) / Yuanyang She (author)
2022
Article (Journal)
Electronic Resource
Unknown
Metadata by DOAJ is licensed under CC BY-SA 1.0
Observations of Drifting Snow Using FlowCapt Sensors in the Southern Altai Mountains, Central Asia
DOAJ | 2022
|IOP Institute of Physics | 2009
|Impact of the Climate Change on the Frozen Tombs in the Altai Mountains
DataCite | 2015
|