A platform for research: civil engineering, architecture and urbanism
Effects of Bamboo (Phyllostachys praecox) Cultivation on Soil Nitrogen Fractions and Mineralization
The mineralization of soil organic nitrogen (N) is the key process in the cycling of N in terrestrial ecosystems. Land-use change to bamboo (Phyllostachys praecox) cultivation that later entails organic material mulching combined with chemical fertilizer application will inevitably influence soil N mineralization (Nmin) and availability dynamics. However, the soil Nmin rates associated with various N fractions of P. praecox in response to land-use change and mulching are not well understood. The present study aimed to understand the effects of land-use change to P. praecox bamboo cultivation and organic material mulching on soil Nmin and availability. Soil properties and organic N fractions were measured in a P. praecox field planted on former paddy fields, a mulched P. praecox field, and a rice (Oryza sativa L.) field. Soil Nmin was determined using a batch incubation method, with mathematical models used to predict soil Nmin kinetics and potential. The conversion from a paddy field to P. praecox plantation decreased the soil pH, soil total N, and soil organic matter (SOM) content significantly (p < 0.05); the mulching method induced further soil acidification. The mulching treatment significantly augmented the SOM content by 7.08% compared with the no-mulching treatment (p < 0.05), but it decreased soil hydrolyzable N and increased the nonhydrolyzable N (NHN) content. Both the Nmin rate and cumulative mineralized N were lowest in the mulched bamboo field. The kinetics of Nmin was best described by the ‘two-pool model’ and ‘special model’. The Pearson’s correlation analysis and the Mantel test suggested soil pH was the dominant factor controlling the soil cumulative mineralized N and mineralization potential in the bamboo fields. These findings could help us better understand the N cycling and N availability under mulching conditions for shifts in land use, and provide a scientific basis for the sustainable management of bamboo plantations.
Effects of Bamboo (Phyllostachys praecox) Cultivation on Soil Nitrogen Fractions and Mineralization
The mineralization of soil organic nitrogen (N) is the key process in the cycling of N in terrestrial ecosystems. Land-use change to bamboo (Phyllostachys praecox) cultivation that later entails organic material mulching combined with chemical fertilizer application will inevitably influence soil N mineralization (Nmin) and availability dynamics. However, the soil Nmin rates associated with various N fractions of P. praecox in response to land-use change and mulching are not well understood. The present study aimed to understand the effects of land-use change to P. praecox bamboo cultivation and organic material mulching on soil Nmin and availability. Soil properties and organic N fractions were measured in a P. praecox field planted on former paddy fields, a mulched P. praecox field, and a rice (Oryza sativa L.) field. Soil Nmin was determined using a batch incubation method, with mathematical models used to predict soil Nmin kinetics and potential. The conversion from a paddy field to P. praecox plantation decreased the soil pH, soil total N, and soil organic matter (SOM) content significantly (p < 0.05); the mulching method induced further soil acidification. The mulching treatment significantly augmented the SOM content by 7.08% compared with the no-mulching treatment (p < 0.05), but it decreased soil hydrolyzable N and increased the nonhydrolyzable N (NHN) content. Both the Nmin rate and cumulative mineralized N were lowest in the mulched bamboo field. The kinetics of Nmin was best described by the ‘two-pool model’ and ‘special model’. The Pearson’s correlation analysis and the Mantel test suggested soil pH was the dominant factor controlling the soil cumulative mineralized N and mineralization potential in the bamboo fields. These findings could help us better understand the N cycling and N availability under mulching conditions for shifts in land use, and provide a scientific basis for the sustainable management of bamboo plantations.
Effects of Bamboo (Phyllostachys praecox) Cultivation on Soil Nitrogen Fractions and Mineralization
Zhuangzhuang Qian (author) / Xiao Sun (author) / Jianshuang Gao (author) / Shunyao Zhuang (author)
2021
Article (Journal)
Electronic Resource
Unknown
Metadata by DOAJ is licensed under CC BY-SA 1.0
Soil Silicon Amendment Increases Phyllostachys praecox Cold Tolerance in a Pot Experiment
DOAJ | 2019
|Effect of Bamboo Nodes on the Mechanical Properties of P. edulis (Phyllostachys edulis) Bamboo
DOAJ | 2021
|