A platform for research: civil engineering, architecture and urbanism
Mathematical Modeling of Efficiency Evaluation of Double-Pass Parallel Flow Solar Air Heater
To investigate the influencing range and optimize values of different operational and system parameters on the double-pass parallel flow solar air heater’s (DPPFSAH) thermal, effective, and exergetic efficiencies, an iterative method was used to analyze the governing energy equations using a theoretical model written in MATLAB based on the Nusselt number (Nu) and friction factor (f) correlations developed in the work performed earlier. A comparison between double-pass and single-pass SAHs for mathematical and experimental outcomes was conducted, and the results were found to be fairly consistent. According to the thermo-hydraulic performance indicators, similar to single-pass SAHs, perforated multi-V rib-roughened DPPFSAHs achieve optimum thermal performance for lower Reynolds numbers, which does not change much as the Reynolds number increases above 18,000. This finding can be taken into account when designing any DPPFSAH.
Mathematical Modeling of Efficiency Evaluation of Double-Pass Parallel Flow Solar Air Heater
To investigate the influencing range and optimize values of different operational and system parameters on the double-pass parallel flow solar air heater’s (DPPFSAH) thermal, effective, and exergetic efficiencies, an iterative method was used to analyze the governing energy equations using a theoretical model written in MATLAB based on the Nusselt number (Nu) and friction factor (f) correlations developed in the work performed earlier. A comparison between double-pass and single-pass SAHs for mathematical and experimental outcomes was conducted, and the results were found to be fairly consistent. According to the thermo-hydraulic performance indicators, similar to single-pass SAHs, perforated multi-V rib-roughened DPPFSAHs achieve optimum thermal performance for lower Reynolds numbers, which does not change much as the Reynolds number increases above 18,000. This finding can be taken into account when designing any DPPFSAH.
Mathematical Modeling of Efficiency Evaluation of Double-Pass Parallel Flow Solar Air Heater
Varun Pratap Singh (author) / Siddharth Jain (author) / Ashish Karn (author) / Ashwani Kumar (author) / Gaurav Dwivedi (author) / Chandan Swaroop Meena (author) / Raffaello Cozzolino (author)
2022
Article (Journal)
Electronic Resource
Unknown
Metadata by DOAJ is licensed under CC BY-SA 1.0
Performance evaluation of a new counter flow double pass solar air heater with turbulators
British Library Online Contents | 2018
|DOAJ | 2020
|