A platform for research: civil engineering, architecture and urbanism
Stress and Deformation Characteristics of Tunnel Surrounding Rock under Alteration
Based on a typical project in an altered rock area, this study carried out numerical simulations using the FLAC3D software to calculate the changes in the stress field, deformation field, and plastic zone of the surrounding rock during the unsupported and supported excavation of a water transfer tunnel. The degree of alteration of the surrounding rock was considered as the base point. The following results were obtained: in the unsupported state, the tunnel surrounding rock was affected by different degrees of alteration, and compressive stress concentration appeared within a certain range at the bottom of the chamber. The value of all-directional stress decreased with the deepening of the degree of alteration, while the opposite was the case for the depth of influence. The displacement changes at the bottom and side walls of the chamber were large and increased significantly with the deepening of the degree of alteration; the displacement monitoring points distributed around the tunnel exhibited the same deformation trend. The plastic zone of the surrounding rock obviously expanded as the degree of alteration deepened. The stress, deformation field, and plastic zone of the tunnel surrounding rock were effectively controlled after the adoption of support measures. The results obtained by this study can be used as a reference for similar projects in altered rock areas.
Stress and Deformation Characteristics of Tunnel Surrounding Rock under Alteration
Based on a typical project in an altered rock area, this study carried out numerical simulations using the FLAC3D software to calculate the changes in the stress field, deformation field, and plastic zone of the surrounding rock during the unsupported and supported excavation of a water transfer tunnel. The degree of alteration of the surrounding rock was considered as the base point. The following results were obtained: in the unsupported state, the tunnel surrounding rock was affected by different degrees of alteration, and compressive stress concentration appeared within a certain range at the bottom of the chamber. The value of all-directional stress decreased with the deepening of the degree of alteration, while the opposite was the case for the depth of influence. The displacement changes at the bottom and side walls of the chamber were large and increased significantly with the deepening of the degree of alteration; the displacement monitoring points distributed around the tunnel exhibited the same deformation trend. The plastic zone of the surrounding rock obviously expanded as the degree of alteration deepened. The stress, deformation field, and plastic zone of the tunnel surrounding rock were effectively controlled after the adoption of support measures. The results obtained by this study can be used as a reference for similar projects in altered rock areas.
Stress and Deformation Characteristics of Tunnel Surrounding Rock under Alteration
Yapeng Chen (author) / Tong Wu (author) / Xiaoshi Yan (author) / Shang Shi (author) / Jianyong Li (author) / Jinyu Dong (author)
2023
Article (Journal)
Electronic Resource
Unknown
Metadata by DOAJ is licensed under CC BY-SA 1.0
Deformation Characteristics of Surrounding Rock of Marine Soft Soil Tunnel Under Cyclic Loading
DOAJ | 2024
|Mathematical Modeling of Deformation of Self-stress Rock Mass Surrounding a Tunnel
Springer Verlag | 2019
|