A platform for research: civil engineering, architecture and urbanism
Numerical Simulation of Oil Spills in the Lower Amazonas River
In 2013, a slope slide took place at the Santana-AP channel that links to the Lower Amazon River’s North Channel, resulting in the sudden collapse of a substantial section of the Port of Santana and its infrastructure. This area houses liquid bulk terminals and pipelines with high pollution potential. The objective of the research is to evaluate the potential environmental impacts of an eventual oil spill in the very short term using a numerical hydrodynamic simulation model coupled with that of pollutant dispersion. The SisBaHiA® software, experimentally calibrated using acoustic methods (ADCP), was used to generate hypothetical scenarios in these areas with a substantial risk of landslides. Two hydrological scenarios stand out in the simulations: (a) November S-1 (dry) and (b) May S-2 (rainy). In S-1, the plume dispersion was higher during flood tides S-1a and S-1b, reaching 4 h urban slope areas, river mouths, tributaries (Matapi and Vila Nova), and environmental protection areas. At S-2, the plume spread was greater during the ebb tides S-2c and S-2d, affecting Macapá’s water supply system 12 h after the accident. The scenarios suggest the existence of high risks associated with the study hypotheses. The dispersion of the plume is directly proportional to the flow, indicating that local hydrodynamics is probably the most relevant dispersive factor. We conclude that the mitigation time for more severe effects is critical in the first 4 h because the coastal geographic feature tends to keep the plume in the Santana channel.
Numerical Simulation of Oil Spills in the Lower Amazonas River
In 2013, a slope slide took place at the Santana-AP channel that links to the Lower Amazon River’s North Channel, resulting in the sudden collapse of a substantial section of the Port of Santana and its infrastructure. This area houses liquid bulk terminals and pipelines with high pollution potential. The objective of the research is to evaluate the potential environmental impacts of an eventual oil spill in the very short term using a numerical hydrodynamic simulation model coupled with that of pollutant dispersion. The SisBaHiA® software, experimentally calibrated using acoustic methods (ADCP), was used to generate hypothetical scenarios in these areas with a substantial risk of landslides. Two hydrological scenarios stand out in the simulations: (a) November S-1 (dry) and (b) May S-2 (rainy). In S-1, the plume dispersion was higher during flood tides S-1a and S-1b, reaching 4 h urban slope areas, river mouths, tributaries (Matapi and Vila Nova), and environmental protection areas. At S-2, the plume spread was greater during the ebb tides S-2c and S-2d, affecting Macapá’s water supply system 12 h after the accident. The scenarios suggest the existence of high risks associated with the study hypotheses. The dispersion of the plume is directly proportional to the flow, indicating that local hydrodynamics is probably the most relevant dispersive factor. We conclude that the mitigation time for more severe effects is critical in the first 4 h because the coastal geographic feature tends to keep the plume in the Santana channel.
Numerical Simulation of Oil Spills in the Lower Amazonas River
Sarana Castro Demoner (author) / Marcelo Rassy Teixeira (author) / Carlos Henrique Medeiros de Abreu (author) / Alan Cavalcanti da Cunha (author)
2023
Article (Journal)
Electronic Resource
Unknown
Metadata by DOAJ is licensed under CC BY-SA 1.0
Monitoring and Combating Chemical Spills on the Lower Mississippi River
British Library Conference Proceedings | 1995
|Monitoring River Spills in Real Time
Wiley | 2002
Numerical Simulation of Chemical Spills and Assessment of Environmental Impacts
HENRY – Federal Waterways Engineering and Research Institute (BAW) | 2008
|Numerical Simulation of Chemical Spills Using CCHE2D Model and Chemical Property Database
British Library Conference Proceedings | 2009
|Numerical Simulation of River Sedimentation and Its Application in the Lower Yellow River
British Library Conference Proceedings | 2004
|