A platform for research: civil engineering, architecture and urbanism
Flash Flood Susceptibility Modelling Using Soft Computing-Based Approaches: From Bibliometric to Meta-Data Analysis and Future Research Directions
In recent years, there has been a growing interest in flood susceptibility modeling. In this study, we conducted a bibliometric analysis followed by a meta-data analysis to capture the nature and evolution of literature, intellectual structure networks, emerging themes, and knowledge gaps in flood susceptibility modeling. Relevant publications were retrieved from the Web of Science database to identify the leading authors, influential journals, and trending articles. The results of the meta-data analysis indicated that hybrid models were the most frequently used prediction models. Results of bibliometric analysis show that GIS, machine learning, statistical models, and the analytical hierarchy process were the central focuses of this research area. The analysis also revealed that slope, elevation, and distance from the river are the most commonly used factors in flood susceptibility modeling. The present study discussed the importance of the resolution of input data, the size and representation of the training sample, other lessons learned, and future research directions in this field.
Flash Flood Susceptibility Modelling Using Soft Computing-Based Approaches: From Bibliometric to Meta-Data Analysis and Future Research Directions
In recent years, there has been a growing interest in flood susceptibility modeling. In this study, we conducted a bibliometric analysis followed by a meta-data analysis to capture the nature and evolution of literature, intellectual structure networks, emerging themes, and knowledge gaps in flood susceptibility modeling. Relevant publications were retrieved from the Web of Science database to identify the leading authors, influential journals, and trending articles. The results of the meta-data analysis indicated that hybrid models were the most frequently used prediction models. Results of bibliometric analysis show that GIS, machine learning, statistical models, and the analytical hierarchy process were the central focuses of this research area. The analysis also revealed that slope, elevation, and distance from the river are the most commonly used factors in flood susceptibility modeling. The present study discussed the importance of the resolution of input data, the size and representation of the training sample, other lessons learned, and future research directions in this field.
Flash Flood Susceptibility Modelling Using Soft Computing-Based Approaches: From Bibliometric to Meta-Data Analysis and Future Research Directions
Gilbert Hinge (author) / Mohamed A. Hamouda (author) / Mohamed M. Mohamed (author)
2024
Article (Journal)
Electronic Resource
Unknown
Metadata by DOAJ is licensed under CC BY-SA 1.0
GIS Based Hybrid Computational Approaches for Flash Flood Susceptibility Assessment
DOAJ | 2020
|DOAJ | 2022
|Green Certificates Research: Bibliometric Assessment of Current State and Future Directions
DOAJ | 2024
|Bibliometric Method for Manufacturing Servitization: A Review and Future Research Directions
DOAJ | 2022
|