A platform for research: civil engineering, architecture and urbanism
Effects of Malachite Green on the Microbiomes of Milkfish Culture Ponds
Intensive fish farming through aquaculture is vulnerable to infectious diseases that can increase fish mortality and damage the productivity of aquaculture farms. To prevent infectious diseases, malachite green (MG) has been applied as a veterinary drug for various microbial infections in aquaculture settings worldwide. However, little is known regarding the consequences of MG and MG-degrading bacteria (MGDB) on microbial communities in milkfish culture ponds (MCPs). In this study, small MCPs were used as a model system to determine the effects of MG on the microbial communities in MCPs. The addition of MG led to cyanobacterial blooms in the small MCP. The addition of MGDB could not completely reverse the effects of MG on microbial communities. Cyanobacterial blooms were not prevented. Microbial communities analyzed by next generation sequencing revealed that cyanobacterial blooms may be due to increase of nitrogen cycle (including nitrogen fixation, nitrate reduction and anammox) associated microbial communities, which raised the levels of ammonium in the water of the small MCP. The communities of anoxygenic phototrophic bacteria (beneficial for aquaculture and aquatic ecosystems) decreased after the addition of MG. The results of this investigation provide valuable insights into the effects of MG in aquaculture and the difficulties of bioremediation for aquatic environments polluted by MG.
Effects of Malachite Green on the Microbiomes of Milkfish Culture Ponds
Intensive fish farming through aquaculture is vulnerable to infectious diseases that can increase fish mortality and damage the productivity of aquaculture farms. To prevent infectious diseases, malachite green (MG) has been applied as a veterinary drug for various microbial infections in aquaculture settings worldwide. However, little is known regarding the consequences of MG and MG-degrading bacteria (MGDB) on microbial communities in milkfish culture ponds (MCPs). In this study, small MCPs were used as a model system to determine the effects of MG on the microbial communities in MCPs. The addition of MG led to cyanobacterial blooms in the small MCP. The addition of MGDB could not completely reverse the effects of MG on microbial communities. Cyanobacterial blooms were not prevented. Microbial communities analyzed by next generation sequencing revealed that cyanobacterial blooms may be due to increase of nitrogen cycle (including nitrogen fixation, nitrate reduction and anammox) associated microbial communities, which raised the levels of ammonium in the water of the small MCP. The communities of anoxygenic phototrophic bacteria (beneficial for aquaculture and aquatic ecosystems) decreased after the addition of MG. The results of this investigation provide valuable insights into the effects of MG in aquaculture and the difficulties of bioremediation for aquatic environments polluted by MG.
Effects of Malachite Green on the Microbiomes of Milkfish Culture Ponds
Chu-Wen Yang (author) / Yi-Tang Chang (author) / Chi-Yen Hsieh (author) / Bea-Ven Chang (author)
2021
Article (Journal)
Electronic Resource
Unknown
Metadata by DOAJ is licensed under CC BY-SA 1.0
Preparation method of low-temperature malachite green glaze porcelain
European Patent Office | 2020
|