A platform for research: civil engineering, architecture and urbanism
Blue Water Footprints of Ontario Dairy Farms
The blue water footprint (WF) is an indicator of freshwater required to produce a given end product. Determining the blue WF for milk production, the seasonal water use and the impact of water conservation are important sustainability considerations for the dairy industry in Ontario (Canada). In this study, a water footprint network (WFN) method was used to calculate the seasonal blue WF’s from in-barn water use data and the fat–protein-corrected milk (FPCM) production. Various water conservation options were estimated using the AgriSuite software. Results showed that the total water use (L of water·cow−1·d−1) and the average blue WF (L of water·kg−1 of FPCM) were 246.3 ± 6.8 L·cow−1·d−1 and 7.4 ± 0.2 L·kg−1, respectively. The total water use and the blue WF could be reduced to 182.7 ± 5.1 L·cow−1·d−1 (25.8% reduction) and 5.8 ± 0.1 L·kg−1 (21.6% reduction), respectively, through adaptive water conservation measures as the reuse of the plate cooler and milk house water. For example, conservation practices could reduce the milk house wash water use from 74.3 ± 8.8 L·cow−1·d−1 to 16.6 ± 0.1 L·cow−1·d−1 (77.7% overall reduction).
Blue Water Footprints of Ontario Dairy Farms
The blue water footprint (WF) is an indicator of freshwater required to produce a given end product. Determining the blue WF for milk production, the seasonal water use and the impact of water conservation are important sustainability considerations for the dairy industry in Ontario (Canada). In this study, a water footprint network (WFN) method was used to calculate the seasonal blue WF’s from in-barn water use data and the fat–protein-corrected milk (FPCM) production. Various water conservation options were estimated using the AgriSuite software. Results showed that the total water use (L of water·cow−1·d−1) and the average blue WF (L of water·kg−1 of FPCM) were 246.3 ± 6.8 L·cow−1·d−1 and 7.4 ± 0.2 L·kg−1, respectively. The total water use and the blue WF could be reduced to 182.7 ± 5.1 L·cow−1·d−1 (25.8% reduction) and 5.8 ± 0.1 L·kg−1 (21.6% reduction), respectively, through adaptive water conservation measures as the reuse of the plate cooler and milk house water. For example, conservation practices could reduce the milk house wash water use from 74.3 ± 8.8 L·cow−1·d−1 to 16.6 ± 0.1 L·cow−1·d−1 (77.7% overall reduction).
Blue Water Footprints of Ontario Dairy Farms
Mariam Al-Bahouh (author) / Vern Osborne (author) / Tom Wright (author) / Mike Dixon (author) / Andrew VanderZaag (author) / Robert Gordon (author)
2021
Article (Journal)
Electronic Resource
Unknown
Metadata by DOAJ is licensed under CC BY-SA 1.0
Engineering Index Backfile | 1933
|Engineering Index Backfile | 1937
|Water Footprints of Dairy Milk Processing Industry: A Case Study of Punjab (India)
DOAJ | 2024
|Potential of closed water systems on dairy farms
British Library Conference Proceedings | 1999
|