A platform for research: civil engineering, architecture and urbanism
Applying Text Mining, Clustering Analysis, and Latent Dirichlet Allocation Techniques for Topic Classification of Environmental Education Journals
Facing the big data wave, this study applied artificial intelligence to cite knowledge and find a feasible process to play a crucial role in supplying innovative value in environmental education. Intelligence agents of artificial intelligence and natural language processing (NLP) are two key areas leading the trend in artificial intelligence; this research adopted NLP to analyze the research topics of environmental education research journals in the Web of Science (WoS) database during 2011–2020 and interpret the categories and characteristics of abstracts for environmental education papers. The corpus data were selected from abstracts and keywords of research journal papers, which were analyzed with text mining, cluster analysis, latent Dirichlet allocation (LDA), and co-word analysis methods. The decisions regarding the classification of feature words were determined and reviewed by domain experts, and the associated TF-IDF weights were calculated for the following cluster analysis, which involved a combination of hierarchical clustering and K-means analysis. The hierarchical clustering and LDA decided the number of required categories as seven, and the K-means cluster analysis classified the overall documents into seven categories. This study utilized co-word analysis to check the suitability of the K-means classification, analyzed the terms with high TF-IDF wights for distinct K-means groups, and examined the terms for different topics with the LDA technique. A comparison of the results demonstrated that most categories that were recognized with K-means and LDA methods were the same and shared similar words; however, two categories had slight differences. The involvement of field experts assisted with the consistency and correctness of the classified topics and documents.
Applying Text Mining, Clustering Analysis, and Latent Dirichlet Allocation Techniques for Topic Classification of Environmental Education Journals
Facing the big data wave, this study applied artificial intelligence to cite knowledge and find a feasible process to play a crucial role in supplying innovative value in environmental education. Intelligence agents of artificial intelligence and natural language processing (NLP) are two key areas leading the trend in artificial intelligence; this research adopted NLP to analyze the research topics of environmental education research journals in the Web of Science (WoS) database during 2011–2020 and interpret the categories and characteristics of abstracts for environmental education papers. The corpus data were selected from abstracts and keywords of research journal papers, which were analyzed with text mining, cluster analysis, latent Dirichlet allocation (LDA), and co-word analysis methods. The decisions regarding the classification of feature words were determined and reviewed by domain experts, and the associated TF-IDF weights were calculated for the following cluster analysis, which involved a combination of hierarchical clustering and K-means analysis. The hierarchical clustering and LDA decided the number of required categories as seven, and the K-means cluster analysis classified the overall documents into seven categories. This study utilized co-word analysis to check the suitability of the K-means classification, analyzed the terms with high TF-IDF wights for distinct K-means groups, and examined the terms for different topics with the LDA technique. A comparison of the results demonstrated that most categories that were recognized with K-means and LDA methods were the same and shared similar words; however, two categories had slight differences. The involvement of field experts assisted with the consistency and correctness of the classified topics and documents.
Applying Text Mining, Clustering Analysis, and Latent Dirichlet Allocation Techniques for Topic Classification of Environmental Education Journals
I-Cheng Chang (author) / Tai-Kuei Yu (author) / Yu-Jie Chang (author) / Tai-Yi Yu (author)
2021
Article (Journal)
Electronic Resource
Unknown
Metadata by DOAJ is licensed under ​CC BY-SA 1.0
Topic Modeling of Online Accommodation Reviews via Latent Dirichlet Allocation
DOAJ | 2020
|Twitter Social Media Conversion Topic Trending Analysis Using Latent Dirichlet Allocation Algorithm
DOAJ | 2022
|Latent Dirichlet Allocation (LDA) topic models for Space Syntax studies on spatial experience
Springer Verlag | 2024
|