A platform for research: civil engineering, architecture and urbanism
Legionella Detection in Environmental Samples as an Example for Successful Implementation of qPCR
Waterborne diseases are a serious threat because of their ability to infect a high number of individuals in a short time span, such as during outbreaks of Legionellosis. This significantly highlights the need for the rapid detection and quantification of bacteria in environmental water samples. The aim of this study was to investigate the feasibility of quantitative Polymerase Chain Reaction (qPCR) for the detection of Legionellapneumophila (L. pneumophila) in environmental water samples and comparison of standard culture methods for Legionella detection with qPCR. Our study reached a negative predictive value (NPV) for L. pneumophila of 80.7% and for L. pneumophila serogroup 1 (sg1) the calculated NPV was 87.0%. The positive predictive value (PPV) for L. pneumophila was 53.9% and for L. pneumophila sg1 PPV was 21.4%. Results showed a correlation between qPCR and culture with an R2 value of 0.8973 for L. pneumophila, whereas no correlation was observed for the detection of L. pneumophila sg1. In our study, qPCR proved useful for the identification of L. pneumophila negative samples. However, despite the obvious benefits (sample handling, rapid generation of results), qPCR needs to be improved regarding the PPV before it can replace culture in water quality assessment.
Legionella Detection in Environmental Samples as an Example for Successful Implementation of qPCR
Waterborne diseases are a serious threat because of their ability to infect a high number of individuals in a short time span, such as during outbreaks of Legionellosis. This significantly highlights the need for the rapid detection and quantification of bacteria in environmental water samples. The aim of this study was to investigate the feasibility of quantitative Polymerase Chain Reaction (qPCR) for the detection of Legionellapneumophila (L. pneumophila) in environmental water samples and comparison of standard culture methods for Legionella detection with qPCR. Our study reached a negative predictive value (NPV) for L. pneumophila of 80.7% and for L. pneumophila serogroup 1 (sg1) the calculated NPV was 87.0%. The positive predictive value (PPV) for L. pneumophila was 53.9% and for L. pneumophila sg1 PPV was 21.4%. Results showed a correlation between qPCR and culture with an R2 value of 0.8973 for L. pneumophila, whereas no correlation was observed for the detection of L. pneumophila sg1. In our study, qPCR proved useful for the identification of L. pneumophila negative samples. However, despite the obvious benefits (sample handling, rapid generation of results), qPCR needs to be improved regarding the PPV before it can replace culture in water quality assessment.
Legionella Detection in Environmental Samples as an Example for Successful Implementation of qPCR
Daniela Toplitsch (author) / Sabine Platzer (author) / Bettina Pfeifer (author) / Jürgen Hautz (author) / Franz Mascher (author) / Clemens Kittinger (author)
2018
Article (Journal)
Electronic Resource
Unknown
Metadata by DOAJ is licensed under CC BY-SA 1.0
British Library Conference Proceedings | 2006
|Legionella: An Environmental Concern
Online Contents | 1993
|British Library Conference Proceedings | 2005
|Emerald Group Publishing | 1998
Online Contents | 2006