A platform for research: civil engineering, architecture and urbanism
Mechanical and Shape Memory Properties of 3D-Printed Cellulose Nanocrystal (CNC)-Reinforced Polylactic Acid Bionanocomposites for Potential 4D Applications
There is a growing need for diversified material feedstock for 3D printing technologies such as fused deposition modelling (FDM) techniques. This has resulted in an increased drive in the research and development of eco-friendly biopolymer-based composites with wide applications. At present, bionanocomposites of polylactic acid (PLA), biopolymer, and cellulose nanocrystals (CNCs) offer promising technical qualities suitable for FDM 3D printing applications due to their biodegradability and wide-ranging applications. In this work, the applicability of the PLA/CNCs bionanocomposites in 4D applications was investigated by studying its shape-recovery behaviour. Tensile and dynamic mechanical analysis (DMA) was used to elucidate the mechanical and flexural properties of the 3D-printed specimens. The results revealed improvement in the deflection temperature under load (DTUL), creep deformation, and recovery of the PLA/CNCs bionanocomposites. Tensile and static 3-point bending analyses of the bionanocomposites revealed improved tensile strength and modulus of the 3D printed parts. The potential 4D application of the PLA/CNCs bionanocomposites was also investigated by successfully printing PLA/CNC bionanocomposites directly onto a nylon fabric. The PLA/CNCs-fabric prototype included a foldable cube and grid-patterned designs. Additionally, the heat-induced shape memory behaviour of these prototypes was demonstrated.
Mechanical and Shape Memory Properties of 3D-Printed Cellulose Nanocrystal (CNC)-Reinforced Polylactic Acid Bionanocomposites for Potential 4D Applications
There is a growing need for diversified material feedstock for 3D printing technologies such as fused deposition modelling (FDM) techniques. This has resulted in an increased drive in the research and development of eco-friendly biopolymer-based composites with wide applications. At present, bionanocomposites of polylactic acid (PLA), biopolymer, and cellulose nanocrystals (CNCs) offer promising technical qualities suitable for FDM 3D printing applications due to their biodegradability and wide-ranging applications. In this work, the applicability of the PLA/CNCs bionanocomposites in 4D applications was investigated by studying its shape-recovery behaviour. Tensile and dynamic mechanical analysis (DMA) was used to elucidate the mechanical and flexural properties of the 3D-printed specimens. The results revealed improvement in the deflection temperature under load (DTUL), creep deformation, and recovery of the PLA/CNCs bionanocomposites. Tensile and static 3-point bending analyses of the bionanocomposites revealed improved tensile strength and modulus of the 3D printed parts. The potential 4D application of the PLA/CNCs bionanocomposites was also investigated by successfully printing PLA/CNC bionanocomposites directly onto a nylon fabric. The PLA/CNCs-fabric prototype included a foldable cube and grid-patterned designs. Additionally, the heat-induced shape memory behaviour of these prototypes was demonstrated.
Mechanical and Shape Memory Properties of 3D-Printed Cellulose Nanocrystal (CNC)-Reinforced Polylactic Acid Bionanocomposites for Potential 4D Applications
Victor Chike Agbakoba (author) / Percy Hlangothi (author) / Jerome Andrew (author) / Maya Jacob John (author)
2022
Article (Journal)
Electronic Resource
Unknown
Metadata by DOAJ is licensed under CC BY-SA 1.0
From elastomeric to rigid polyurethane/cellulose nanocrystal bionanocomposites
British Library Online Contents | 2013
|From elastomeric to rigid polyurethane/cellulose nanocrystal bionanocomposites
British Library Online Contents | 2013
|British Library Online Contents | 2012
|Cellulose nanofiber-reinforced polylactic acid
British Library Online Contents | 2008
|