A platform for research: civil engineering, architecture and urbanism
Unprecedented snow-drought conditions in the Italian Alps during the early 2020s
Snow represents a fundamental water resource for mountain and lowland areas. Changes in the frequency and magnitude of snow droughts can significantly impact societies and ecosystems that rely on snowmelt to satisfy their water demands. Here we documented and quantified the snow drought that affected the Italian Alps during the early 2020s. We used 15 long-term snow-depth series (period 1930–2023, elevation range: 864–2200 m a.s.l.) to simulate the snow water equivalent (SWE), in conjunction with climatic reanalysis data and river discharge observations. We found that the March SWE anomaly in 2022 reached the lowest value in the last century, due to an unprecedented combination of drier- and warmer-than-normal conditions in the period December 2021–March 2022. This event contributed to causing critical hydrological conditions in the Po and Adige rivers which, during summer 2022, experienced the worst hydrological drought ever recorded. Despite its unprecedented magnitude, the snow drought in 2022 is part of a recent pattern of increased intensity and frequency of snow-drought events since the 1990s, due to the combined increasing occurrence of warmer- and drier-than-normal climatic conditions during the snow season. Remarkably, three out of the five most severe snow-drought events occurred in the last five years, with exceptional snow-drought conditions even occurring in the last two consecutive winters, 2022 and 2023. The snow-drought conditions that occurred in the early 2020s in the Italian Alps warn of the pressing need for the implementation of impact mitigation measures to adapt to the fast changing snow and climatic conditions.
Unprecedented snow-drought conditions in the Italian Alps during the early 2020s
Snow represents a fundamental water resource for mountain and lowland areas. Changes in the frequency and magnitude of snow droughts can significantly impact societies and ecosystems that rely on snowmelt to satisfy their water demands. Here we documented and quantified the snow drought that affected the Italian Alps during the early 2020s. We used 15 long-term snow-depth series (period 1930–2023, elevation range: 864–2200 m a.s.l.) to simulate the snow water equivalent (SWE), in conjunction with climatic reanalysis data and river discharge observations. We found that the March SWE anomaly in 2022 reached the lowest value in the last century, due to an unprecedented combination of drier- and warmer-than-normal conditions in the period December 2021–March 2022. This event contributed to causing critical hydrological conditions in the Po and Adige rivers which, during summer 2022, experienced the worst hydrological drought ever recorded. Despite its unprecedented magnitude, the snow drought in 2022 is part of a recent pattern of increased intensity and frequency of snow-drought events since the 1990s, due to the combined increasing occurrence of warmer- and drier-than-normal climatic conditions during the snow season. Remarkably, three out of the five most severe snow-drought events occurred in the last five years, with exceptional snow-drought conditions even occurring in the last two consecutive winters, 2022 and 2023. The snow-drought conditions that occurred in the early 2020s in the Italian Alps warn of the pressing need for the implementation of impact mitigation measures to adapt to the fast changing snow and climatic conditions.
Unprecedented snow-drought conditions in the Italian Alps during the early 2020s
Nicola Colombo (author) / Nicolas Guyennon (author) / Mauro Valt (author) / Franco Salerno (author) / Danilo Godone (author) / Paola Cianfarra (author) / Michele Freppaz (author) / Maurizio Maugeri (author) / Veronica Manara (author) / Fiorella Acquaotta (author)
2023
Article (Journal)
Electronic Resource
Unknown
Metadata by DOAJ is licensed under CC BY-SA 1.0
Recent snow cover variability in the Italian Alps
Online Contents | 2010
|Monitoring snow avalanches in Northwestern Italian Alps using an infrasound array
Online Contents | 2011
|The distribution of daily snow water equivalent in the central Italian Alps
British Library Online Contents | 2007
|Regional snow depth frequency curves for avalanche hazard mapping in central Italian Alps
Online Contents | 2006
|Modelling soil removal from snow avalanches: A case study in the North-Western Italian Alps
Online Contents | 2012
|