A platform for research: civil engineering, architecture and urbanism
Contrasting Effects of Bioturbation Studied in Intact and Reconstructed Estuarine Sediments
Macrofauna can produce contrasting biogeochemical effects in intact and reconstructed sediments. We measured benthic fluxes of oxygen, inorganic carbon, and nitrogen and denitrification rates in intact sediments dominated by a filter and a deposit feeder and in reconstructed sediments added with increasing densities of the same organisms. Measurements in reconstructed sediments were carried out 5 days after macrofauna addition. The degree of stimulation of the measured fluxes in the intact and reconstructed sediments was then compared. Results confirmed that high densities of bioturbating macrofauna produce profound effects on sediment biogeochemistry, enhancing benthic respiration and ammonium recycling by up to a factor of ~3 and ~9, respectively, as compared to control sediments. The deposit feeder also increased total denitrification by a factor of ~2, whereas the filter feeder activity did not stimulate nitrogen removal. Moreover, the effects of deposit feeders on benthic fluxes were significantly higher (e.g., on respiration and ammonium recycling) or different (e.g., on denitrification) when measured in intact and reconstructed sediments. In intact sediments, deposit feeders enhanced the denitrification coupled to nitrification and had no effects on the denitrification of water column nitrate, whereas in reconstructed sediments, the opposite was true. This may reflect active burrowing in reconstructed sediments and the long time needed for slow growing nitrifiers to develop within burrows. Results suggest that, in bioturbation studies, oversimplified experimental approaches and insufficient preincubation time might lead to wrong interpretation of the role of macrofauna in sediment biogeochemistry, far from that occurring in nature.
Contrasting Effects of Bioturbation Studied in Intact and Reconstructed Estuarine Sediments
Macrofauna can produce contrasting biogeochemical effects in intact and reconstructed sediments. We measured benthic fluxes of oxygen, inorganic carbon, and nitrogen and denitrification rates in intact sediments dominated by a filter and a deposit feeder and in reconstructed sediments added with increasing densities of the same organisms. Measurements in reconstructed sediments were carried out 5 days after macrofauna addition. The degree of stimulation of the measured fluxes in the intact and reconstructed sediments was then compared. Results confirmed that high densities of bioturbating macrofauna produce profound effects on sediment biogeochemistry, enhancing benthic respiration and ammonium recycling by up to a factor of ~3 and ~9, respectively, as compared to control sediments. The deposit feeder also increased total denitrification by a factor of ~2, whereas the filter feeder activity did not stimulate nitrogen removal. Moreover, the effects of deposit feeders on benthic fluxes were significantly higher (e.g., on respiration and ammonium recycling) or different (e.g., on denitrification) when measured in intact and reconstructed sediments. In intact sediments, deposit feeders enhanced the denitrification coupled to nitrification and had no effects on the denitrification of water column nitrate, whereas in reconstructed sediments, the opposite was true. This may reflect active burrowing in reconstructed sediments and the long time needed for slow growing nitrifiers to develop within burrows. Results suggest that, in bioturbation studies, oversimplified experimental approaches and insufficient preincubation time might lead to wrong interpretation of the role of macrofauna in sediment biogeochemistry, far from that occurring in nature.
Contrasting Effects of Bioturbation Studied in Intact and Reconstructed Estuarine Sediments
Marco Bartoli (author) / Sara Benelli (author) / Monia Magri (author) / Cristina Ribaudo (author) / Paula Carpintero Moraes (author) / Giuseppe Castaldelli (author)
2020
Article (Journal)
Electronic Resource
Unknown
Metadata by DOAJ is licensed under CC BY-SA 1.0
Clogging of infiltration basins by stormwater sediments: influence of invertebrate bioturbation
British Library Conference Proceedings | 2007
|R+ Bacteria in Estuarine Sediments
NTIS | 1980
|