A platform for research: civil engineering, architecture and urbanism
Mitigating the Toxic Effects of Chromium on Wheat (Triticum aestivum L.) Seed Germination and Seedling Growth by Using Biochar and Polymer-Modified Biochar in Contaminated Soil
The present study was conducted to investigate the potential influences of biochar in mitigating the phytotoxic effects of hexavalent chromium (CrVI) on the germination of wheat (Triticum aestivum L.). Biochar (JBC) was produced from Jujube (Ziziphus jujube L.) wood waste at three different pyrolysis temperatures (300 °C, 500 °C and 700 °C), which was later polymerized (JPBC) via the solution-polymerization method. Phytotoxicity of CrVI was induced to wheat seeds at variable CrVI application rates (5, 10, 20, 40 mg L−1). Applied CrVI concentrations confined the seed germination and seedling growth in order of: 5 < 10 < 20 < 40 mg L−1. The application of JBCs (0.2 g per petri plate) resulted in a 150% increase in shoot length, while dry biomass was increased by 250% with JPBCs application. Uptake of CrVI was significantly lower in JBC-300 (7.74 μg/seedling) and JPBC-300 (1.13 μg/seedling) treatments, as compared to control (13.24 μg/seedling), at the highest stress level (40 mg L−1). Therefore, the findings of the current study showed that JBCs and JPBCs performed excellently in improving seedling growth while JPBCs performed more efficiently than pristine JBCs in mitigating CrVI phytotoxicity and availability.
Mitigating the Toxic Effects of Chromium on Wheat (Triticum aestivum L.) Seed Germination and Seedling Growth by Using Biochar and Polymer-Modified Biochar in Contaminated Soil
The present study was conducted to investigate the potential influences of biochar in mitigating the phytotoxic effects of hexavalent chromium (CrVI) on the germination of wheat (Triticum aestivum L.). Biochar (JBC) was produced from Jujube (Ziziphus jujube L.) wood waste at three different pyrolysis temperatures (300 °C, 500 °C and 700 °C), which was later polymerized (JPBC) via the solution-polymerization method. Phytotoxicity of CrVI was induced to wheat seeds at variable CrVI application rates (5, 10, 20, 40 mg L−1). Applied CrVI concentrations confined the seed germination and seedling growth in order of: 5 < 10 < 20 < 40 mg L−1. The application of JBCs (0.2 g per petri plate) resulted in a 150% increase in shoot length, while dry biomass was increased by 250% with JPBCs application. Uptake of CrVI was significantly lower in JBC-300 (7.74 μg/seedling) and JPBC-300 (1.13 μg/seedling) treatments, as compared to control (13.24 μg/seedling), at the highest stress level (40 mg L−1). Therefore, the findings of the current study showed that JBCs and JPBCs performed excellently in improving seedling growth while JPBCs performed more efficiently than pristine JBCs in mitigating CrVI phytotoxicity and availability.
Mitigating the Toxic Effects of Chromium on Wheat (Triticum aestivum L.) Seed Germination and Seedling Growth by Using Biochar and Polymer-Modified Biochar in Contaminated Soil
Muhammad I. Rafique (author) / Munir Ahmad (author) / Mohammad I. Al-Wabel (author) / Jahangir Ahmad (author) / Abdullah S. Al-Farraj (author)
2022
Article (Journal)
Electronic Resource
Unknown
Metadata by DOAJ is licensed under CC BY-SA 1.0
Applications of Biochar and Modified Biochar in Heavy Metal Contaminated Soil: A Descriptive Review
DOAJ | 2021
|Biochar: An Effective Amendment for Remediating Contaminated Soil
Springer Verlag | 2013
|Exploring Potential Soil Bacteria for Sustainable Wheat (Triticum aestivum L.) Production
DOAJ | 2019
|