A platform for research: civil engineering, architecture and urbanism
Morphometric Controls on Glacier Mass Balance of the Puruogangri Ice Field, Central Tibetan Plateau
Evaluating the impacts of climatic changes and morphometric features on glacier mass balance is crucial to providing insight into glacier changes and their effects on regional water resources and ecosystems. Here, we presented an evaluation of morphometric effects on the glacier mass balances of the Puruogangri ice field (PIF) on the Tibetan Plateau. A clear spatial variability of glacier mass balances, ranging from −0.035 to +0.019 m·w.e.·year−1, was estimated by comparing the TanDEM-X DEM (2012) with the SRTM-X DEM (2000). In general, the observed glacier mass changes were consistent with our fieldwork investigations. Furthermore, by applying the method of linear regression analysis, we found that the mass changes of individual glaciers on the PIF were mainly dominated by the mean altitude (R = 0.84, p < 0.001), however, they were statistically independent of glacier size, aspect, and surface velocity. At a local scale (grid size of 10 × 10 pixels), apart from the factor of altitude, surface velocity was correlated with glacier mass change.
Morphometric Controls on Glacier Mass Balance of the Puruogangri Ice Field, Central Tibetan Plateau
Evaluating the impacts of climatic changes and morphometric features on glacier mass balance is crucial to providing insight into glacier changes and their effects on regional water resources and ecosystems. Here, we presented an evaluation of morphometric effects on the glacier mass balances of the Puruogangri ice field (PIF) on the Tibetan Plateau. A clear spatial variability of glacier mass balances, ranging from −0.035 to +0.019 m·w.e.·year−1, was estimated by comparing the TanDEM-X DEM (2012) with the SRTM-X DEM (2000). In general, the observed glacier mass changes were consistent with our fieldwork investigations. Furthermore, by applying the method of linear regression analysis, we found that the mass changes of individual glaciers on the PIF were mainly dominated by the mean altitude (R = 0.84, p < 0.001), however, they were statistically independent of glacier size, aspect, and surface velocity. At a local scale (grid size of 10 × 10 pixels), apart from the factor of altitude, surface velocity was correlated with glacier mass change.
Morphometric Controls on Glacier Mass Balance of the Puruogangri Ice Field, Central Tibetan Plateau
Lin Liu (author) / Liming Jiang (author) / Yafei Sun (author) / Hansheng Wang (author) / Chaolu Yi (author) / Houtse Hsu (author)
2016
Article (Journal)
Electronic Resource
Unknown
Metadata by DOAJ is licensed under CC BY-SA 1.0
Three-Dimensional Glacier Changes in Geladandong Peak Region in the Central Tibetan Plateau
DOAJ | 2018
|