A platform for research: civil engineering, architecture and urbanism
Removal of Antibiotic Resistance Genes at Two Conventional Wastewater Treatment Plants of Louisiana, USA
Wastewater treatment plants (WWTPs) represent all known types of antibiotic resistance mechanisms and are considered as the critical points for the spread of antibiotic resistance genes (ARGs). The purpose of this study is to investigate the removal of a Class 1 integrase gene (intI1) and a selected set of ARGs (blaTEM, ermF, mecA, and tetA) at two conventional WWTPs by using chlorination in Louisiana, USA. We collected 69 wastewater samples (23 each from influent, secondary effluent, and final effluent) and determined the concentrations of ARGs by using quantitative polymerase chain reaction. All tested ARGs, except for mecA, were detected in 83–96% and 30–65% of influent and final effluent samples, respectively. Although the ARGs underwent approximately 3-log10 reduction, two WWTPs on an average still released 3.3 ± 1.7 log10 copies/mL of total ARGs studied in the effluents. Chlorination was found to be critical in the significant reduction of total ARGs (p < 0.05). Correlation analysis and the ability of intI1 to persist through the treatment processes recommend the use of intI1 as a marker of ARGs in effluents to monitor the spread of antibiotic resistance in effluents. Our study suggests that conventional WWTPs using chlorination do not favor the proliferation of antibiotic resistance bacteria and ARGs during wastewater treatment.
Removal of Antibiotic Resistance Genes at Two Conventional Wastewater Treatment Plants of Louisiana, USA
Wastewater treatment plants (WWTPs) represent all known types of antibiotic resistance mechanisms and are considered as the critical points for the spread of antibiotic resistance genes (ARGs). The purpose of this study is to investigate the removal of a Class 1 integrase gene (intI1) and a selected set of ARGs (blaTEM, ermF, mecA, and tetA) at two conventional WWTPs by using chlorination in Louisiana, USA. We collected 69 wastewater samples (23 each from influent, secondary effluent, and final effluent) and determined the concentrations of ARGs by using quantitative polymerase chain reaction. All tested ARGs, except for mecA, were detected in 83–96% and 30–65% of influent and final effluent samples, respectively. Although the ARGs underwent approximately 3-log10 reduction, two WWTPs on an average still released 3.3 ± 1.7 log10 copies/mL of total ARGs studied in the effluents. Chlorination was found to be critical in the significant reduction of total ARGs (p < 0.05). Correlation analysis and the ability of intI1 to persist through the treatment processes recommend the use of intI1 as a marker of ARGs in effluents to monitor the spread of antibiotic resistance in effluents. Our study suggests that conventional WWTPs using chlorination do not favor the proliferation of antibiotic resistance bacteria and ARGs during wastewater treatment.
Removal of Antibiotic Resistance Genes at Two Conventional Wastewater Treatment Plants of Louisiana, USA
Ocean Thakali (author) / John P. Brooks (author) / Shalina Shahin (author) / Samendra P. Sherchan (author) / Eiji Haramoto (author)
2020
Article (Journal)
Electronic Resource
Unknown
Metadata by DOAJ is licensed under CC BY-SA 1.0