A platform for research: civil engineering, architecture and urbanism
CryoEM reveals oligomeric isomers of a multienzyme complex and assembly mechanics
Propionyl-CoA carboxylase (PCC) is a multienzyme complex consisting of up to six α-subunits and six β-subunits. Belonging to a metabolic pathway converging on the citric acid cycle, it is present in most forms of life and irregularities in its assembly lead to serious illness in humans, known as propionic acidemia. Here, we report the cryogenic electron microscopy (cryoEM) structures and assembly of different oligomeric isomers of endogenous PCC from the parasitic protozoan Leishmania tarentolae (LtPCC). These structures and their statistical distribution reveal the mechanics of PCC assembly and disassembly at equilibrium. We show that, in solution, endogenous LtPCC β-subunits form stable homohexamers, to which different numbers of α-subunits attach. Sorting LtPCC particles into seven classes (i.e., oligomeric formulae α0β6, α1β6, α2β6, α3β6, α4β6, α5β6, α6β6) enables formulation of a model for PCC assembly. Our results suggest how multimerization regulates PCC enzymatic activity and showcase the utility of cryoEM in revealing the statistical mechanics of reaction pathways.
CryoEM reveals oligomeric isomers of a multienzyme complex and assembly mechanics
Propionyl-CoA carboxylase (PCC) is a multienzyme complex consisting of up to six α-subunits and six β-subunits. Belonging to a metabolic pathway converging on the citric acid cycle, it is present in most forms of life and irregularities in its assembly lead to serious illness in humans, known as propionic acidemia. Here, we report the cryogenic electron microscopy (cryoEM) structures and assembly of different oligomeric isomers of endogenous PCC from the parasitic protozoan Leishmania tarentolae (LtPCC). These structures and their statistical distribution reveal the mechanics of PCC assembly and disassembly at equilibrium. We show that, in solution, endogenous LtPCC β-subunits form stable homohexamers, to which different numbers of α-subunits attach. Sorting LtPCC particles into seven classes (i.e., oligomeric formulae α0β6, α1β6, α2β6, α3β6, α4β6, α5β6, α6β6) enables formulation of a model for PCC assembly. Our results suggest how multimerization regulates PCC enzymatic activity and showcase the utility of cryoEM in revealing the statistical mechanics of reaction pathways.
CryoEM reveals oligomeric isomers of a multienzyme complex and assembly mechanics
Jane K.J. Lee (author) / Yun-Tao Liu (author) / Jason J. Hu (author) / Inna Aphasizheva (author) / Ruslan Aphasizhev (author) / Z. Hong Zhou (author)
2023
Article (Journal)
Electronic Resource
Unknown
Metadata by DOAJ is licensed under CC BY-SA 1.0
Local Maximum Absorption Method for Structure Fitting in CryoEM
British Library Online Contents | 2011
|The Ewald sphere/focus gradient does not limit the resolution of cryoEM reconstructions
DOAJ | 2023
|Biophysical investigation of type a putas reveals a conserved core oligomeric structure
British Library Online Contents | 2017
|