A platform for research: civil engineering, architecture and urbanism
Synthesis of Hopcalite catalysts by various methods for improved catalytic conversion of carbon monoxide
The conversion of carbon monoxide (CO) at ambient condition is major procedure for human life protection. The Hopcalite (CuMnOx) is one of the best known catalysts for lower temperature CO conversion. The synthesis of hopcalite catalysts by various methods including Co-precipitation (CP), Sol-gel (SG), Reactive grinding (RG), Impregnation (I) and Pyrolysis (P) highly effects on the performance of final catalysts for CO conversion. In this experimental work various types of hopcalite catalysts prepared by various methods (CP, SG, RG, I, and P) followed by calcination in reactive (CO-air) mixture and traditional calcination conditions. The performance of different hopcalite catalysts for CO conversion reaction was as follows: CuMnCP > CuMnRG > CuMnSG > CuMnP > CuMnI. The Co-precipitation method synthesized hopcalite catalyst followed by reactive calcination conditions represents that the most excellent catalytic performance for complete conversion of CO at 80 °C. The order of synthetic conditions based on the activity of hopcalite catalysts matched with their characterization. Our effort to demonstrates that the simplistic and potential strategy for improvement of catalytic perfromances over hopcalite catalysts, which should be suitable for different chemical reactions. Hopcalite is a lower cost, simply aviliable and recycle catalysts for application in catalytic converter for CO conversion purposes.
Synthesis of Hopcalite catalysts by various methods for improved catalytic conversion of carbon monoxide
The conversion of carbon monoxide (CO) at ambient condition is major procedure for human life protection. The Hopcalite (CuMnOx) is one of the best known catalysts for lower temperature CO conversion. The synthesis of hopcalite catalysts by various methods including Co-precipitation (CP), Sol-gel (SG), Reactive grinding (RG), Impregnation (I) and Pyrolysis (P) highly effects on the performance of final catalysts for CO conversion. In this experimental work various types of hopcalite catalysts prepared by various methods (CP, SG, RG, I, and P) followed by calcination in reactive (CO-air) mixture and traditional calcination conditions. The performance of different hopcalite catalysts for CO conversion reaction was as follows: CuMnCP > CuMnRG > CuMnSG > CuMnP > CuMnI. The Co-precipitation method synthesized hopcalite catalyst followed by reactive calcination conditions represents that the most excellent catalytic performance for complete conversion of CO at 80 °C. The order of synthetic conditions based on the activity of hopcalite catalysts matched with their characterization. Our effort to demonstrates that the simplistic and potential strategy for improvement of catalytic perfromances over hopcalite catalysts, which should be suitable for different chemical reactions. Hopcalite is a lower cost, simply aviliable and recycle catalysts for application in catalytic converter for CO conversion purposes.
Synthesis of Hopcalite catalysts by various methods for improved catalytic conversion of carbon monoxide
S. Dey (author) / G. C. Dhal (author)
2020
Article (Journal)
Electronic Resource
Unknown
Metadata by DOAJ is licensed under CC BY-SA 1.0
Catalytic conversion of carbon monoxide into carbon dioxide over spinel catalysts: An overview
DOAJ | 2019
|Core-shell catalysts tolerate carbon monoxide
British Library Online Contents | 2013
|Contribution à la lutte contre l'oxyde de carbone au moyen de catalyseurs mixtes du type "hopcalite"
UB Braunschweig | 1940
|Surface Design for Catalytic Reduction of Nitrogen Monoxide by Hollandite Catalysts
British Library Online Contents | 1995
|