A platform for research: civil engineering, architecture and urbanism
Study on the Evaluation of (Heavy) Metals in Water and Sediment of Skadar Lake (Montenegro), with BCF Assessment and Translocation Ability (TA) by Trapa natans and a Review of SDGs
Skadar Lake is a crypto-depression, a shallow lake, near to the Adriatic coast; the largest in the Balkan Peninsula and in southeastern Europe. The Lake is a very complex aquatic ecosystem in which anthropogenic activities have a long history in terms of the impact on wildlife and the overexploitation of natural resources. Such consequences related to heavy metals represent a global problem. Heavy metal pollution can cause severe ecological consequences in aquatic ecosystems. These pollutants accumulate in the aquatic biota from water, sediment and through the food chain, the impact can magnify. Aquatic macrophytes are good indicators of the health of a water body. This research was carried out to evaluate heavy metals concentration in water, sediment and in the aquatic macrophyte Trapa natans (water chestnut), with BCF (bio-concentration factor), BSAF (biota sediment accumulation factor) and TA (translocation ability), in order to determine the water quality of this specific part of the aquatic ecosystem of Skadar Lake near to the settlement of Vranjina, a fishing village. The determination of heavy metals was carried out by ICP-OES. (Inductively coupled plasma-optical emission spectrometry). Statistical analysis was established by R statistical computing software, version 3.5.3. The metal concentration in the water decreases in the following sequential order: As > Pb > Zn > Cu = Al = Cr > Cd = Hg. Meanwhile in the sediment, the descending sequence is as follows: Cr > Zn > Cu > Pb > As > Cd > Hg. The ability of plants to absorb and accumulate metals from the aqueous growth medium was assessed using a bio-concentration factor. The BCF in the stem, leaf and fruit has high values, mainly, of Al, Cr, Cu and Zn, while for the biota sediment accumulation factor, the highest values were recorded for the following elements: Hg, Cd, Cu and Zn. Analysis of the translocation ability of TA shows the dominance of four metals: Pb, Cd, Hg and As. A significant positive Kendall’s correlation coefficient between sediment and stem (R = 0.73, p < 0.05), stem and leaf (R = 0.87, p < 0.05) and leaf and fruit (R = 1, p < 0.05) was established.
Study on the Evaluation of (Heavy) Metals in Water and Sediment of Skadar Lake (Montenegro), with BCF Assessment and Translocation Ability (TA) by Trapa natans and a Review of SDGs
Skadar Lake is a crypto-depression, a shallow lake, near to the Adriatic coast; the largest in the Balkan Peninsula and in southeastern Europe. The Lake is a very complex aquatic ecosystem in which anthropogenic activities have a long history in terms of the impact on wildlife and the overexploitation of natural resources. Such consequences related to heavy metals represent a global problem. Heavy metal pollution can cause severe ecological consequences in aquatic ecosystems. These pollutants accumulate in the aquatic biota from water, sediment and through the food chain, the impact can magnify. Aquatic macrophytes are good indicators of the health of a water body. This research was carried out to evaluate heavy metals concentration in water, sediment and in the aquatic macrophyte Trapa natans (water chestnut), with BCF (bio-concentration factor), BSAF (biota sediment accumulation factor) and TA (translocation ability), in order to determine the water quality of this specific part of the aquatic ecosystem of Skadar Lake near to the settlement of Vranjina, a fishing village. The determination of heavy metals was carried out by ICP-OES. (Inductively coupled plasma-optical emission spectrometry). Statistical analysis was established by R statistical computing software, version 3.5.3. The metal concentration in the water decreases in the following sequential order: As > Pb > Zn > Cu = Al = Cr > Cd = Hg. Meanwhile in the sediment, the descending sequence is as follows: Cr > Zn > Cu > Pb > As > Cd > Hg. The ability of plants to absorb and accumulate metals from the aqueous growth medium was assessed using a bio-concentration factor. The BCF in the stem, leaf and fruit has high values, mainly, of Al, Cr, Cu and Zn, while for the biota sediment accumulation factor, the highest values were recorded for the following elements: Hg, Cd, Cu and Zn. Analysis of the translocation ability of TA shows the dominance of four metals: Pb, Cd, Hg and As. A significant positive Kendall’s correlation coefficient between sediment and stem (R = 0.73, p < 0.05), stem and leaf (R = 0.87, p < 0.05) and leaf and fruit (R = 1, p < 0.05) was established.
Study on the Evaluation of (Heavy) Metals in Water and Sediment of Skadar Lake (Montenegro), with BCF Assessment and Translocation Ability (TA) by Trapa natans and a Review of SDGs
Marijana Krivokapić (author)
2021
Article (Journal)
Electronic Resource
Unknown
Metadata by DOAJ is licensed under CC BY-SA 1.0
Sediment-water fluxes for selected heavy metals at Lake Naivasha, Kenya
British Library Online Contents | 2005
|