A platform for research: civil engineering, architecture and urbanism
Effect of Particulate Matter on Biofilm Stability in a Water Supply Network
The safety of water supply networks has always been a concern. The biofilm attached on the pipes will fall into pipe water when disturbed, which is a potential threat to human health. Particulate matter can contain bacteria, and most bacteria in water will adhere to the surface of particulate matter, are not easy to kill using disinfectants. Therefore, the effect of particulate matter and extracellular polymeric substances (EPS) on the stability of biofilm was investigated. This study revealed that biofilm without particulate matter had the highest biomass, at an order of magnitude higher than biofilm with particulate matter and bacteria, while biofilm with abundant particulate matter and bacteria were more stable. The effect of shear stress on the biofilm attached on the pipes was investigated through rotational speed experiments, and the results implied that the collision between bacterial polymers increased with an increase in rotational speed and the formation of stale biofilm adhered inside the pipes. Further, instead of protein and fatty chains, the hydroxyl bonds played vital roles in the combination of particulate matter and EPS.
Effect of Particulate Matter on Biofilm Stability in a Water Supply Network
The safety of water supply networks has always been a concern. The biofilm attached on the pipes will fall into pipe water when disturbed, which is a potential threat to human health. Particulate matter can contain bacteria, and most bacteria in water will adhere to the surface of particulate matter, are not easy to kill using disinfectants. Therefore, the effect of particulate matter and extracellular polymeric substances (EPS) on the stability of biofilm was investigated. This study revealed that biofilm without particulate matter had the highest biomass, at an order of magnitude higher than biofilm with particulate matter and bacteria, while biofilm with abundant particulate matter and bacteria were more stable. The effect of shear stress on the biofilm attached on the pipes was investigated through rotational speed experiments, and the results implied that the collision between bacterial polymers increased with an increase in rotational speed and the formation of stale biofilm adhered inside the pipes. Further, instead of protein and fatty chains, the hydroxyl bonds played vital roles in the combination of particulate matter and EPS.
Effect of Particulate Matter on Biofilm Stability in a Water Supply Network
Zhiling Zhao (author) / Lu Wang (author) / Xiyu Sun (author) / Tianneng Lai (author)
2023
Article (Journal)
Electronic Resource
Unknown
Metadata by DOAJ is licensed under CC BY-SA 1.0
Motion Adsorption Characteristics of Particulate Matter in Water Supply Network
DOAJ | 2022
|BUCKET FOR PARTICULATE MATTER TRANSPORT AND PARTICULATE MATTER TRANSPORT METHOD
European Patent Office | 2019
|