A platform for research: civil engineering, architecture and urbanism
Exploring the Impact of Green Walls on Occupant Thermal State in Immersive Virtual Environment
Green walls have been used in built environments as a natural element to bring various benefits, thus improving human health and well-being. However, in conventional virtual environments, the visual connection with a green wall is the only way that this natural element could benefit humans. Unfortunately, the impact of such visual connection on human thermal perception is still not well understood. Thus, we conducted an experimental study with 40 participants comparing the thermal state of two virtual sessions: biophilic (a room with a green wall) and non-biophilic (the same room without a green wall). Both sessions were conducted in a climate chamber under a slightly warm condition (28.89 °C and 50% relative humidity). Participants’ thermal state, skin temperature, and heart rate data were collected. According to the results, participants’ thermal comfort and hand skin temperature were significantly different between the two sessions, and their mean skin temperature was statistically increased over time. The study suggests that before the extent to which the impact of visual stimuli (e.g., green walls) on thermal perception is fully understood, researchers may need to control visual and thermal stimuli separately when using them in immersive virtual environments. Furthermore, the virtual exposure time should be an important consideration when designing experimental procedures.
Exploring the Impact of Green Walls on Occupant Thermal State in Immersive Virtual Environment
Green walls have been used in built environments as a natural element to bring various benefits, thus improving human health and well-being. However, in conventional virtual environments, the visual connection with a green wall is the only way that this natural element could benefit humans. Unfortunately, the impact of such visual connection on human thermal perception is still not well understood. Thus, we conducted an experimental study with 40 participants comparing the thermal state of two virtual sessions: biophilic (a room with a green wall) and non-biophilic (the same room without a green wall). Both sessions were conducted in a climate chamber under a slightly warm condition (28.89 °C and 50% relative humidity). Participants’ thermal state, skin temperature, and heart rate data were collected. According to the results, participants’ thermal comfort and hand skin temperature were significantly different between the two sessions, and their mean skin temperature was statistically increased over time. The study suggests that before the extent to which the impact of visual stimuli (e.g., green walls) on thermal perception is fully understood, researchers may need to control visual and thermal stimuli separately when using them in immersive virtual environments. Furthermore, the virtual exposure time should be an important consideration when designing experimental procedures.
Exploring the Impact of Green Walls on Occupant Thermal State in Immersive Virtual Environment
Alireza Sedghikhanshir (author) / Yimin Zhu (author) / Yan Chen (author) / Brendan Harmon (author)
2022
Article (Journal)
Electronic Resource
Unknown
Metadata by DOAJ is licensed under CC BY-SA 1.0
Exploring Thermally-Driven Occupant Behavioral Intention in Immersive Virtual Environment
TIBKAT | 2023
|British Library Conference Proceedings | 2017
|Use of immersive virtual environments for occupant behaviour monitoring and data collection
Taylor & Francis Verlag | 2017
|British Library Online Contents | 2018
|