A platform for research: civil engineering, architecture and urbanism
Automating Plot-Level Stem Analysis from Terrestrial Laser Scanning
Terrestrial laser scanning (TLS) provides an accurate means of analyzing individual tree attributes, and can be extended to plots using multiple TLS scans. However, multiple TLS scans may reduce the effectiveness of individual tree structure quantification, often due to understory occupation, mutual tree occlusion, and other influences. The procedure to delineate accurate tree attributes from plot scans involves onerous steps and automated integration is challenging in the literature. This study proposes a fully automatic approach composed of ground filtering, stem detection, and stem form extraction algorithms, with emphasis on accuracy and feasibility. The delineated attributes can be useful to analyze terrain, tree biomass and fiber quality. The automation was experimented on a mature pine plot in Finland with both single scan (SS) and multiple scans (MS) datasets. With mensuration as reference, digital terrain models (DTM), stem locations, diameters at breast height (DBHs), stem heights, and stem forms of the whole plot were extracted and validated. Results of this study were best using the multiple scans (MS) dataset, where 76% of stems were detected (n = 49). Height extraction accuracy was 0.68 (r2) and 1.7 m (RMSE), and DBH extraction accuracy was 0.97 (r2) and 0.90 cm (RMSE). Height-wise stem diameter extraction accuracy was 0.76 (r2) and 2.4 cm (RMSE).
Automating Plot-Level Stem Analysis from Terrestrial Laser Scanning
Terrestrial laser scanning (TLS) provides an accurate means of analyzing individual tree attributes, and can be extended to plots using multiple TLS scans. However, multiple TLS scans may reduce the effectiveness of individual tree structure quantification, often due to understory occupation, mutual tree occlusion, and other influences. The procedure to delineate accurate tree attributes from plot scans involves onerous steps and automated integration is challenging in the literature. This study proposes a fully automatic approach composed of ground filtering, stem detection, and stem form extraction algorithms, with emphasis on accuracy and feasibility. The delineated attributes can be useful to analyze terrain, tree biomass and fiber quality. The automation was experimented on a mature pine plot in Finland with both single scan (SS) and multiple scans (MS) datasets. With mensuration as reference, digital terrain models (DTM), stem locations, diameters at breast height (DBHs), stem heights, and stem forms of the whole plot were extracted and validated. Results of this study were best using the multiple scans (MS) dataset, where 76% of stems were detected (n = 49). Height extraction accuracy was 0.68 (r2) and 1.7 m (RMSE), and DBH extraction accuracy was 0.97 (r2) and 0.90 cm (RMSE). Height-wise stem diameter extraction accuracy was 0.76 (r2) and 2.4 cm (RMSE).
Automating Plot-Level Stem Analysis from Terrestrial Laser Scanning
Zhouxin Xi (author) / Christopher Hopkinson (author) / Laura Chasmer (author)
2016
Article (Journal)
Electronic Resource
Unknown
terrestrial laser scanning , forestry , DTM , DBH , stem detection , stem form , automatic , plot scale , TLS , point cloud segmentation , Plant ecology , QK900-989
Metadata by DOAJ is licensed under CC BY-SA 1.0
Terrestrial laser scanning to estimate plot-level forest canopy fuel properties
Online Contents | 2011
|Automating surface flatness control using terrestrial laser scanning and building information models
British Library Online Contents | 2014
|Automating surface flatness control using terrestrial laser scanning and building information models
Online Contents | 2014
|