A platform for research: civil engineering, architecture and urbanism
Water Engineering at Precolumbian AD 600–1100 Tiwanaku’s Urban Center (Bolivia)
The pre-Columbian World Heritage site of Tiwanaku (AD 600–1100) located in highland altiplano Bolivia is shown to have a unique urban water supply system with many advanced hydraulic and hydrological features. By use of Computational Fluid Dynamics (CFD) modeling of the city water system, new revelations as to the complexity of the water system are brought forward. The water system consists of a perimeter drainage channel surrounding the ceremonial center of the city. A network of surface canals and subterranean channels connected to the perimeter drainage channel are supplied by multiple canals from a rainfall collection reservoir. The perimeter drainage channel provides rapid draining of rainy season rainfall runoff together with aquifer drainage of intercepted rainfall; water collected in the perimeter drainage channel is then directed to the Tiwanaku River then on to Lake Titicaca. During the dry season aquifer drainage continues into the perimeter drainage channel; additional water is directed into the drainage channel from a recently discovered, reservoir connected M channel. Two subterranean channels beneath the ceremonial center were supplied by M channel water delivered into the perimeter drainage channel that served to remove waste from the ceremonial center structures conveyed to the nearby Tiwanaku River. From control of the water supply to/from the perimeter drainage channel during wet and dry seasonal changes, stabilization of the deep groundwater level was achieved—this resulted in the stabilization of monumental ceremonial structure’s foundations, a continuous water supply to inner city agricultural zones, water pools for urban use and health benefits for the city population through moisture level reduction in city ceremonial and secular urban housing structures.
Water Engineering at Precolumbian AD 600–1100 Tiwanaku’s Urban Center (Bolivia)
The pre-Columbian World Heritage site of Tiwanaku (AD 600–1100) located in highland altiplano Bolivia is shown to have a unique urban water supply system with many advanced hydraulic and hydrological features. By use of Computational Fluid Dynamics (CFD) modeling of the city water system, new revelations as to the complexity of the water system are brought forward. The water system consists of a perimeter drainage channel surrounding the ceremonial center of the city. A network of surface canals and subterranean channels connected to the perimeter drainage channel are supplied by multiple canals from a rainfall collection reservoir. The perimeter drainage channel provides rapid draining of rainy season rainfall runoff together with aquifer drainage of intercepted rainfall; water collected in the perimeter drainage channel is then directed to the Tiwanaku River then on to Lake Titicaca. During the dry season aquifer drainage continues into the perimeter drainage channel; additional water is directed into the drainage channel from a recently discovered, reservoir connected M channel. Two subterranean channels beneath the ceremonial center were supplied by M channel water delivered into the perimeter drainage channel that served to remove waste from the ceremonial center structures conveyed to the nearby Tiwanaku River. From control of the water supply to/from the perimeter drainage channel during wet and dry seasonal changes, stabilization of the deep groundwater level was achieved—this resulted in the stabilization of monumental ceremonial structure’s foundations, a continuous water supply to inner city agricultural zones, water pools for urban use and health benefits for the city population through moisture level reduction in city ceremonial and secular urban housing structures.
Water Engineering at Precolumbian AD 600–1100 Tiwanaku’s Urban Center (Bolivia)
Charles R. Ortloff (author)
2020
Article (Journal)
Electronic Resource
Unknown
Metadata by DOAJ is licensed under CC BY-SA 1.0
Making “Meaning”: Precolumbian Archaeology, Art History, and the Legacy of Terence Grieder
OERSI | 2022
|RIVERSIDE HEALTH CENTER, NEW YORK CITY 1100 ARCHITECT
British Library Online Contents | 2015
|Articles - An Emerging Logic of Urban Water Management, Cochabamba, Bolivia
Online Contents | 1999
|Post-neoliberal nature? community water governance in peri-urban Cochabamba, Bolivia
BASE | 2012
|