A platform for research: civil engineering, architecture and urbanism
Well-to-wheels energy use and greenhouse gas emissions of ethanol from corn, sugarcane and cellulosic biomass for US use
Globally, bioethanol is the largest volume biofuel used in the transportation sector, with corn-based ethanol production occurring mostly in the US and sugarcane-based ethanol production occurring mostly in Brazil. Advances in technology and the resulting improved productivity in corn and sugarcane farming and ethanol conversion, together with biofuel policies, have contributed to the significant expansion of ethanol production in the past 20 years. These improvements have increased the energy and greenhouse gas (GHG) benefits of using bioethanol as opposed to using petroleum gasoline. This article presents results from our most recently updated simulations of energy use and GHG emissions that result from using bioethanol made from several feedstocks. The results were generated with the GREET (Greenhouse gases, Regulated Emissions, and Energy use in Transportation) model. In particular, based on a consistent and systematic model platform, we estimate life-cycle energy consumption and GHG emissions from using ethanol produced from five feedstocks: corn, sugarcane, corn stover, switchgrass and miscanthus. We quantitatively address the impacts of a few critical factors that affect life-cycle GHG emissions from bioethanol. Even when the highly debated land use change GHG emissions are included, changing from corn to sugarcane and then to cellulosic biomass helps to significantly increase the reductions in energy use and GHG emissions from using bioethanol. Relative to petroleum gasoline, ethanol from corn, sugarcane, corn stover, switchgrass and miscanthus can reduce life-cycle GHG emissions by 19–48%, 40–62%, 90–103%, 77–97% and 101–115%, respectively. Similar trends have been found with regard to fossil energy benefits for the five bioethanol pathways.
Well-to-wheels energy use and greenhouse gas emissions of ethanol from corn, sugarcane and cellulosic biomass for US use
Globally, bioethanol is the largest volume biofuel used in the transportation sector, with corn-based ethanol production occurring mostly in the US and sugarcane-based ethanol production occurring mostly in Brazil. Advances in technology and the resulting improved productivity in corn and sugarcane farming and ethanol conversion, together with biofuel policies, have contributed to the significant expansion of ethanol production in the past 20 years. These improvements have increased the energy and greenhouse gas (GHG) benefits of using bioethanol as opposed to using petroleum gasoline. This article presents results from our most recently updated simulations of energy use and GHG emissions that result from using bioethanol made from several feedstocks. The results were generated with the GREET (Greenhouse gases, Regulated Emissions, and Energy use in Transportation) model. In particular, based on a consistent and systematic model platform, we estimate life-cycle energy consumption and GHG emissions from using ethanol produced from five feedstocks: corn, sugarcane, corn stover, switchgrass and miscanthus. We quantitatively address the impacts of a few critical factors that affect life-cycle GHG emissions from bioethanol. Even when the highly debated land use change GHG emissions are included, changing from corn to sugarcane and then to cellulosic biomass helps to significantly increase the reductions in energy use and GHG emissions from using bioethanol. Relative to petroleum gasoline, ethanol from corn, sugarcane, corn stover, switchgrass and miscanthus can reduce life-cycle GHG emissions by 19–48%, 40–62%, 90–103%, 77–97% and 101–115%, respectively. Similar trends have been found with regard to fossil energy benefits for the five bioethanol pathways.
Well-to-wheels energy use and greenhouse gas emissions of ethanol from corn, sugarcane and cellulosic biomass for US use
Michael Wang (author) / Jeongwoo Han (author) / Jennifer B Dunn (author) / Hao Cai (author) / Amgad Elgowainy (author)
2012
Article (Journal)
Electronic Resource
Unknown
Metadata by DOAJ is licensed under CC BY-SA 1.0
IOP Institute of Physics | 2012
|DOAJ | 2021
|Well-to-wheels greenhouse gas and air pollutant emissions from battery electric vehicles in China
Online Contents | 2019
|Lifecycle greenhouse gas implications of US national scenarios for cellulosic ethanol production
IOP Institute of Physics | 2012
|IOP Institute of Physics | 2012
|