A platform for research: civil engineering, architecture and urbanism
The Variation in Water Consumption by Transpiration of Qinghai Spruce among Canopy Layers in the Qilian Mountains, Northwestern China
It is important for integrated forest-water management to develop a better understanding of the variation of tree transpiration among different canopy layers in the forests and its response to soil moisture and weather conditions. The results will provide insights into water consumption by trees occupying different social positions of the forests. In the present study, an experiment was conducted in the Qilian Mountains, northwest China, and 13 trees, i.e., 4–5 trees from each one of dominant (the relative tree height (HR) > 1.65), subdominant (1.25 < HR ≤ 1.65) and intermediate-suppressed (HR ≤ 1.25) layers) were chosen as sample trees in a pure Qinghai spruce (Picea crassifolia Kom.) forest stand. The sap flux density of sample trees, soil moisture of main root zone (0 to 60 cm) and meteorological conditions in open field were observed simultaneously from July to October of 2015 and 2016. The results showed that (1) The mean daily stand transpiration for the study period in 2015 and 2016 (July–October), was 0.408 and 0.313 mm·day−1, and the cumulative stand transpiration was 54.84 and 40.97 mm, accounting for 24.14% (227.2 mm) and 16.39% (249.9 mm) of the total precipitation over the same periods, respectively. (2) The transpiration varied greatly among canopy layers, and the transpiration of the dominant and codominant layers was the main contributors to the stand transpiration, contributing 86.05% and 81.28% of the stand transpiration, respectively, in 2015 and 2016. (3) The stand transpiration was strongly affected by potential evapotranspiration (PET) and volumetric soil moisture (VSM). However, the transpiration of trees from the dominant and codominant layers was more sensitive to PET changes and that from the intermediate-suppressed layer was more susceptible to soil drought. This implied that in dry period, such as in drought events, the dominant and codominant trees would transpire more water, while the intermediate-suppressed trees almost stopped transpiration. These remind us that the canopy structure was the essential factor affecting single-tree and forest transpiration in the dryland areas.
The Variation in Water Consumption by Transpiration of Qinghai Spruce among Canopy Layers in the Qilian Mountains, Northwestern China
It is important for integrated forest-water management to develop a better understanding of the variation of tree transpiration among different canopy layers in the forests and its response to soil moisture and weather conditions. The results will provide insights into water consumption by trees occupying different social positions of the forests. In the present study, an experiment was conducted in the Qilian Mountains, northwest China, and 13 trees, i.e., 4–5 trees from each one of dominant (the relative tree height (HR) > 1.65), subdominant (1.25 < HR ≤ 1.65) and intermediate-suppressed (HR ≤ 1.25) layers) were chosen as sample trees in a pure Qinghai spruce (Picea crassifolia Kom.) forest stand. The sap flux density of sample trees, soil moisture of main root zone (0 to 60 cm) and meteorological conditions in open field were observed simultaneously from July to October of 2015 and 2016. The results showed that (1) The mean daily stand transpiration for the study period in 2015 and 2016 (July–October), was 0.408 and 0.313 mm·day−1, and the cumulative stand transpiration was 54.84 and 40.97 mm, accounting for 24.14% (227.2 mm) and 16.39% (249.9 mm) of the total precipitation over the same periods, respectively. (2) The transpiration varied greatly among canopy layers, and the transpiration of the dominant and codominant layers was the main contributors to the stand transpiration, contributing 86.05% and 81.28% of the stand transpiration, respectively, in 2015 and 2016. (3) The stand transpiration was strongly affected by potential evapotranspiration (PET) and volumetric soil moisture (VSM). However, the transpiration of trees from the dominant and codominant layers was more sensitive to PET changes and that from the intermediate-suppressed layer was more susceptible to soil drought. This implied that in dry period, such as in drought events, the dominant and codominant trees would transpire more water, while the intermediate-suppressed trees almost stopped transpiration. These remind us that the canopy structure was the essential factor affecting single-tree and forest transpiration in the dryland areas.
The Variation in Water Consumption by Transpiration of Qinghai Spruce among Canopy Layers in the Qilian Mountains, Northwestern China
Yanfang Wan (author) / Pengtao Yu (author) / Yanhui Wang (author) / Bin Wang (author) / Yipeng Yu (author) / Xiao Wang (author) / Zebin Liu (author) / Xiande Liu (author) / Shunli Wang (author) / Wei Xiong (author)
2020
Article (Journal)
Electronic Resource
Unknown
Metadata by DOAJ is licensed under CC BY-SA 1.0
DOAJ | 2020
|