A platform for research: civil engineering, architecture and urbanism
Review of machine learning techniques for energy sharing and biomass waste gasification pathways in integrating solar greenhouses into smart energy systems
The integration of solar greenhouses into smart energy systems (SESs) remains largely unexplored, despite their potential to enhance energy sharing and hydrogen production. This review investigates the role of solar greenhouses as active energy contributors within SESs, emphasizing their biomass waste gasification for hydrogen production and their integration into district heating and cooling (DHC) networks. A structured classification of machine learning (ML) and deep learning (DL) techniques applied in forecasting and optimizing these processes is provided. Additionally, the evolution of DHC systems is analyzed, with a focus on fifth-generation DHC (5GDHC) networks, which facilitate bidirectional energy exchange at near-ambient temperatures. The review highlights that existing studies have predominantly addressed SES advancements and ML-driven energy management without considering the contributions of solar greenhouses. A novel framework is proposed, illustrating their role as prosumers capable of exchanging electricity, hydrogen, and thermal energy within SESs. Key findings reveal that integrating solar greenhouses with SESs can enhance energy efficiency, reduce carbon emissions, and improve system resilience. Furthermore, ML-driven predictive control strategies, particularly model predictive control (MPC), are identified as essential for optimizing real-time energy flows and biomass gasification processes. This study provides a foundation for future research on the technical, economic, and environmental feasibility of integrating greenhouses into SESs. The insights presented offer a pathway toward more sustainable, AI-driven energy-sharing networks, supporting policymakers and industry stakeholders in the transition toward low-carbon energy solutions.
Review of machine learning techniques for energy sharing and biomass waste gasification pathways in integrating solar greenhouses into smart energy systems
The integration of solar greenhouses into smart energy systems (SESs) remains largely unexplored, despite their potential to enhance energy sharing and hydrogen production. This review investigates the role of solar greenhouses as active energy contributors within SESs, emphasizing their biomass waste gasification for hydrogen production and their integration into district heating and cooling (DHC) networks. A structured classification of machine learning (ML) and deep learning (DL) techniques applied in forecasting and optimizing these processes is provided. Additionally, the evolution of DHC systems is analyzed, with a focus on fifth-generation DHC (5GDHC) networks, which facilitate bidirectional energy exchange at near-ambient temperatures. The review highlights that existing studies have predominantly addressed SES advancements and ML-driven energy management without considering the contributions of solar greenhouses. A novel framework is proposed, illustrating their role as prosumers capable of exchanging electricity, hydrogen, and thermal energy within SESs. Key findings reveal that integrating solar greenhouses with SESs can enhance energy efficiency, reduce carbon emissions, and improve system resilience. Furthermore, ML-driven predictive control strategies, particularly model predictive control (MPC), are identified as essential for optimizing real-time energy flows and biomass gasification processes. This study provides a foundation for future research on the technical, economic, and environmental feasibility of integrating greenhouses into SESs. The insights presented offer a pathway toward more sustainable, AI-driven energy-sharing networks, supporting policymakers and industry stakeholders in the transition toward low-carbon energy solutions.
Review of machine learning techniques for energy sharing and biomass waste gasification pathways in integrating solar greenhouses into smart energy systems
Navid Mahdavi (author) / Animesh Dutta (author) / Syeda Humaira Tasnim (author) / Shohel Mahmud (author)
2025
Article (Journal)
Electronic Resource
Unknown
Metadata by DOAJ is licensed under CC BY-SA 1.0
Taylor & Francis Verlag | 2012
|British Library Online Contents | 2012
|