A platform for research: civil engineering, architecture and urbanism
Using Computer Vision for Monitoring the Quality of 3D-Printed Concrete Structures
Concrete 3D printing has the potential to reduce material and process waste in construction. Thus, it contributes to making the construction industry more sustainable through the use of digital-fabrication technologies. While concrete 3D printing is attractive due to its potential to realize complex designs, practical challenges include an increased chance of defects and deformities. Quality assessment of 3D-printed elements is essential for large-scale implementation. Workability of concrete is known to decrease with printing time and it impacts extrudability. It is usually visible in 3D-printed elements, with the lower layers having a smooth finish, while the top layers have cracks and discontinuities. A computer-vision-based quality assessment method is proposed in this paper using a two-bin Linear Binary Pattern textural analysis. Information entropy is used as the metric for measuring the texture variation within each layer and its changes over the layers are studied. A higher entropy value is found for layers having deformities. Finally, through the error-minimization technique, a threshold entropy value is calculated and, using this, the printed layers can be assessed and corrective actions taken. This paper contributes to developing a non-intrusive quality assessment technique for concrete 3D-printed elements.
Using Computer Vision for Monitoring the Quality of 3D-Printed Concrete Structures
Concrete 3D printing has the potential to reduce material and process waste in construction. Thus, it contributes to making the construction industry more sustainable through the use of digital-fabrication technologies. While concrete 3D printing is attractive due to its potential to realize complex designs, practical challenges include an increased chance of defects and deformities. Quality assessment of 3D-printed elements is essential for large-scale implementation. Workability of concrete is known to decrease with printing time and it impacts extrudability. It is usually visible in 3D-printed elements, with the lower layers having a smooth finish, while the top layers have cracks and discontinuities. A computer-vision-based quality assessment method is proposed in this paper using a two-bin Linear Binary Pattern textural analysis. Information entropy is used as the metric for measuring the texture variation within each layer and its changes over the layers are studied. A higher entropy value is found for layers having deformities. Finally, through the error-minimization technique, a threshold entropy value is calculated and, using this, the printed layers can be assessed and corrective actions taken. This paper contributes to developing a non-intrusive quality assessment technique for concrete 3D-printed elements.
Using Computer Vision for Monitoring the Quality of 3D-Printed Concrete Structures
Shanmugaraj Senthilnathan (author) / Benny Raphael (author)
2022
Article (Journal)
Electronic Resource
Unknown
Metadata by DOAJ is licensed under CC BY-SA 1.0
Real-time monitoring and feedback operation system for 3D-printed concrete based on computer vision
TIBKAT | 2024
|Geometrical quality inspection in 3D concrete printing using AI-assisted computer vision
Springer Verlag | 2025
|Geometrical quality inspection in 3D concrete printing using AI-assisted computer vision
Springer Verlag | 2025
|