A platform for research: civil engineering, architecture and urbanism
Abstract Although the recent load information is critical to very short-term load forecasting (VSTLF), power companies often have difficulties in collecting the most recent load values accurately and timely for VSTLF applications. This paper tackles the problem of real-time anomaly detection in most recent load information used by VSTLF. This paper proposes a model-based anomaly detection method that consists of two components, a dynamic regression model and an adaptive anomaly threshold. The case study is developed using the data from ISO New England. This paper demonstrates that the proposed method significantly outperforms three other anomaly detection methods including two methods commonly used in the field and one state-of-the-art method used by a winning team of the Global Energy Forecasting Competition 2014. Finally, a general anomaly detection framework is proposed for the future research.
Abstract Although the recent load information is critical to very short-term load forecasting (VSTLF), power companies often have difficulties in collecting the most recent load values accurately and timely for VSTLF applications. This paper tackles the problem of real-time anomaly detection in most recent load information used by VSTLF. This paper proposes a model-based anomaly detection method that consists of two components, a dynamic regression model and an adaptive anomaly threshold. The case study is developed using the data from ISO New England. This paper demonstrates that the proposed method significantly outperforms three other anomaly detection methods including two methods commonly used in the field and one state-of-the-art method used by a winning team of the Global Energy Forecasting Competition 2014. Finally, a general anomaly detection framework is proposed for the future research.
Real-time anomaly detection for very short-term load forecasting
2018
Article (Journal)
Electronic Resource
Unknown
Metadata by DOAJ is licensed under CC BY-SA 1.0
Short-term load forecasting using time series clustering
Springer Verlag | 2022
|Very short term irradiance forecasting using the lasso
British Library Online Contents | 2015
|Fuzzy Inference Model for Short-Term Load Forecasting
Springer Verlag | 2022
|