A platform for research: civil engineering, architecture and urbanism
Integrated Transcriptome and Biochemical Analysis Provides New Insights into the Leaf Color Change in Acer fabri
Acer fabri is a widely distributed ornamental tree with colorful leaves and high ornamental value. Its young leaves change from red to red and green until turning fully green. To understand the mechanism of leaf color change, transcriptome sequencing and pigment content determination were performed in three stages during the leaf color change of A. fabri. In total, 53,550 genes, including 838 transcription factors (TFs), were identified by transcriptome sequencing. In addition, the results of orthogonal partial least squares-discriminant analysis (OPLS-DA) of three pigments in the three stages of leaf color development suggested that carotenoids played a major role in the process of leaf color change from red to red-green, whereas anthocyanins played an important role in the process of leaf color change from red to green. Based on weighted gene co-expression network analysis (WGCNA), Af0034384 (HSFB2A), Af0051627 (NMT1), and Af0052541 (THY-1) were selected as hub genes from characteristic modules with significant correlation between carotenoids and anthocyanins. The results of gene network regulation maps and real-time fluorescence quantitative PCR (qRT-PCR) showed that Af0010511 (NAC100) upregulated the expression of Af0034384 (HSFB2A), leading to an increase in carotenoid content and the gradual greening of leaves during the transition from red to green. However, during the transition from red to green leaves, Af0033232 (NAC83) and Af0049421 (WRKY24) downregulated the expression of Af0051627 (NMT1) and Af0052541 (THY-1), respectively, leading to a decrease in anthocyanin content and the complete greening of leaves. These results could provide new ideas for studying the molecular mechanism of leaf color change in A. fabri and other species.
Integrated Transcriptome and Biochemical Analysis Provides New Insights into the Leaf Color Change in Acer fabri
Acer fabri is a widely distributed ornamental tree with colorful leaves and high ornamental value. Its young leaves change from red to red and green until turning fully green. To understand the mechanism of leaf color change, transcriptome sequencing and pigment content determination were performed in three stages during the leaf color change of A. fabri. In total, 53,550 genes, including 838 transcription factors (TFs), were identified by transcriptome sequencing. In addition, the results of orthogonal partial least squares-discriminant analysis (OPLS-DA) of three pigments in the three stages of leaf color development suggested that carotenoids played a major role in the process of leaf color change from red to red-green, whereas anthocyanins played an important role in the process of leaf color change from red to green. Based on weighted gene co-expression network analysis (WGCNA), Af0034384 (HSFB2A), Af0051627 (NMT1), and Af0052541 (THY-1) were selected as hub genes from characteristic modules with significant correlation between carotenoids and anthocyanins. The results of gene network regulation maps and real-time fluorescence quantitative PCR (qRT-PCR) showed that Af0010511 (NAC100) upregulated the expression of Af0034384 (HSFB2A), leading to an increase in carotenoid content and the gradual greening of leaves during the transition from red to green. However, during the transition from red to green leaves, Af0033232 (NAC83) and Af0049421 (WRKY24) downregulated the expression of Af0051627 (NMT1) and Af0052541 (THY-1), respectively, leading to a decrease in anthocyanin content and the complete greening of leaves. These results could provide new ideas for studying the molecular mechanism of leaf color change in A. fabri and other species.
Integrated Transcriptome and Biochemical Analysis Provides New Insights into the Leaf Color Change in Acer fabri
Guohua Liu (author) / Heng Gu (author) / Hongyu Cai (author) / Congcong Guo (author) / Ying Chen (author) / Lianggui Wang (author) / Gongwei Chen (author)
2023
Article (Journal)
Electronic Resource
Unknown
<i>Acer fabri</i> , leaf , pigment , transcriptome , WGCNA , Plant ecology , QK900-989
Metadata by DOAJ is licensed under CC BY-SA 1.0
Transcriptome Analysis Provides Insights into Lignin Biosynthesis in Styrax tonkinensis Branches
DOAJ | 2024
|Transcriptome Analysis Provides Insights into Korean Pine Tree Aging and Response to Shading
DOAJ | 2024
|