A platform for research: civil engineering, architecture and urbanism
A synthetic view of rainfall intensification in the West African Sahel
The West African Sahel has been facing for more than 30 years an increase in extreme rainfall with strong socio-economic impacts. This situation challenges decision-makers to define adaptation strategies in a rapidly changing climate. The present study proposes (i) a quantitative characterization of the trends in extreme rainfall at the regional scale, (ii) the translation of the trends into metrics that can be used by hydrological risk managers, (iii) elements for understanding the link between the climatology of extreme and mean rainfall. Based on a regional non-stationary statistical model applied to in-situ daily rainfall data over the period 1983–2015, we show that the region-wide increasing trend in extreme rainfall is highly significant. The change in extreme value distribution reflects an increase in both the mean and variability, producing a 5%/decade increase in extreme rainfall intensity whatever the return period. The statistical framework provides operational elements for revising the design methods of hydraulic structures which most often assume a stationary climate. Finally, the study shows that the increase in annual maxima of daily rainfall is more attributable to stronger storm intensities (80%) than to more frequent storm occurrences (20%), reflecting a major rainfall regime shift in comparison to those observed in the region since 1950.
A synthetic view of rainfall intensification in the West African Sahel
The West African Sahel has been facing for more than 30 years an increase in extreme rainfall with strong socio-economic impacts. This situation challenges decision-makers to define adaptation strategies in a rapidly changing climate. The present study proposes (i) a quantitative characterization of the trends in extreme rainfall at the regional scale, (ii) the translation of the trends into metrics that can be used by hydrological risk managers, (iii) elements for understanding the link between the climatology of extreme and mean rainfall. Based on a regional non-stationary statistical model applied to in-situ daily rainfall data over the period 1983–2015, we show that the region-wide increasing trend in extreme rainfall is highly significant. The change in extreme value distribution reflects an increase in both the mean and variability, producing a 5%/decade increase in extreme rainfall intensity whatever the return period. The statistical framework provides operational elements for revising the design methods of hydraulic structures which most often assume a stationary climate. Finally, the study shows that the increase in annual maxima of daily rainfall is more attributable to stronger storm intensities (80%) than to more frequent storm occurrences (20%), reflecting a major rainfall regime shift in comparison to those observed in the region since 1950.
A synthetic view of rainfall intensification in the West African Sahel
G Chagnaud (author) / G Panthou (author) / T Vischel (author) / T Lebel (author)
2022
Article (Journal)
Electronic Resource
Unknown
Metadata by DOAJ is licensed under ​CC BY-SA 1.0
Sustaining wetland ecosystems in the West and central African Sahel
British Library Conference Proceedings | 2002
|Socioeconomic potential of carbon sequestration through agroforestry in the West African Sahel
Online Contents | 2008
|Evidence of scaling properties in West African rainfall
British Library Conference Proceedings | 2002
|British Library Online Contents | 2001
|