A platform for research: civil engineering, architecture and urbanism
Life Cycle Assessment of District Heating Systems in Europe: Case Study and Recommendations
District heating systems are a way to integrate renewable energies into the heating sector, with the primary aim of decarbonizing this final use. In such systems, renewable energy sources are centrally managed with cutting-edge technological equipment, efficient maintenance rates and service guarantees. Both the decarbonization effect and the centralization lead to environmental benefits, which can go beyond the climate change indicator. In this study, life cycle assessment was used to assess the environmental sustainability of district heating solutions compared to standalones. The study aimed to examine a diverse set of options for large-scale district heating systems across Europe and to compare them to different standalone solutions. Eight technologies (five district-level and three standalone solutions) were analyzed in two densities of habitats and four areas of Europe. This study aimed to understand the drivers of district heating environmental performance and to provide guidelines for accounting said performance. The analysis showed better performance for district heating scenarios compared to isotechnology standalones for every environmental impact category: the climate change impact category were reduced from 5 to 90%, while respiratory inorganics were reduced from 45 to 64%, depending on the considered climatic area. This statement was true under key parameters, both technical and methodological—efficiencies and complement rates, but also the neutral carbon principle for biomass energy accounting and allocation rules.
Life Cycle Assessment of District Heating Systems in Europe: Case Study and Recommendations
District heating systems are a way to integrate renewable energies into the heating sector, with the primary aim of decarbonizing this final use. In such systems, renewable energy sources are centrally managed with cutting-edge technological equipment, efficient maintenance rates and service guarantees. Both the decarbonization effect and the centralization lead to environmental benefits, which can go beyond the climate change indicator. In this study, life cycle assessment was used to assess the environmental sustainability of district heating solutions compared to standalones. The study aimed to examine a diverse set of options for large-scale district heating systems across Europe and to compare them to different standalone solutions. Eight technologies (five district-level and three standalone solutions) were analyzed in two densities of habitats and four areas of Europe. This study aimed to understand the drivers of district heating environmental performance and to provide guidelines for accounting said performance. The analysis showed better performance for district heating scenarios compared to isotechnology standalones for every environmental impact category: the climate change impact category were reduced from 5 to 90%, while respiratory inorganics were reduced from 45 to 64%, depending on the considered climatic area. This statement was true under key parameters, both technical and methodological—efficiencies and complement rates, but also the neutral carbon principle for biomass energy accounting and allocation rules.
Life Cycle Assessment of District Heating Systems in Europe: Case Study and Recommendations
Camille Jeandaux (author) / Jean-Baptiste Videau (author) / Anne Prieur-Vernat (author)
2021
Article (Journal)
Electronic Resource
Unknown
Metadata by DOAJ is licensed under CC BY-SA 1.0
Environmental Life Cycle Assessment scenarios for a district heating network. An Italian case study
BASE | 2021
|Life Cycle Assessment of District Heating Distribution Networks in China - Pipe Production
British Library Conference Proceedings | 2012
|Life Cycle Assessment of Low Temperature District Heating System in Gulbene Region
Online Contents | 2020
|