A platform for research: civil engineering, architecture and urbanism
Hydrogeochemical Characteristic of Geothermal Water and Precursory Anomalies along the Xianshuihe Fault Zone, Southwestern China
Hydrogeochemical changes in association with earthquakes are considered as a potential means of identifying earthquake precursors. The Xianshuihe fault zone (XSHF) is considered one of the most active seismic fault zones in China; 43 hot springs were sampled and analysed in the laboratory for major elements, silica, stable isotopes (δD and δ18O) and strontium isotopes were investigated from 2008 to 2021. The meteoric water acted as the primary water source of the hot spring in the XSHF, and recharged elevations ranged from 1.9 to 4.8 km. The geothermometers method was used to estimate the region of thermal storage temperature and its temperature between 8 and 142 °C. And the circulation depth ranged from 0.1 to 6.9 km. Most of the hot spring water was immature water with a weak degree of water-rock reaction. However, the degree of water-rock reaction and the depth of hot spring water circulation were high in part of the Kangding and Daufu segments, which also had the highest reservoir temperature and the most frequent strong earthquakes. Temporal variations of hydrogeochemical showed that Na+, Cl− and SO42− decreased obviously following the 12 May 2008 Wenchuan Ms8.0 and existed abnormal value fluctuations from the 20 April 2013 Lushan Ms7.0 to 22 November 2014 Kangding Ms6.3 occurred and after 20 July 2017 returned to the normal levels. And the ion concentrations in hot springs increased by 5% to 35% three months before 22 November 2014 Kangding Ms6.3 with the obvious precursor anomaly. Hydrogeochemical anomalies could be useful for predicting an earthquake in the study area.
Hydrogeochemical Characteristic of Geothermal Water and Precursory Anomalies along the Xianshuihe Fault Zone, Southwestern China
Hydrogeochemical changes in association with earthquakes are considered as a potential means of identifying earthquake precursors. The Xianshuihe fault zone (XSHF) is considered one of the most active seismic fault zones in China; 43 hot springs were sampled and analysed in the laboratory for major elements, silica, stable isotopes (δD and δ18O) and strontium isotopes were investigated from 2008 to 2021. The meteoric water acted as the primary water source of the hot spring in the XSHF, and recharged elevations ranged from 1.9 to 4.8 km. The geothermometers method was used to estimate the region of thermal storage temperature and its temperature between 8 and 142 °C. And the circulation depth ranged from 0.1 to 6.9 km. Most of the hot spring water was immature water with a weak degree of water-rock reaction. However, the degree of water-rock reaction and the depth of hot spring water circulation were high in part of the Kangding and Daufu segments, which also had the highest reservoir temperature and the most frequent strong earthquakes. Temporal variations of hydrogeochemical showed that Na+, Cl− and SO42− decreased obviously following the 12 May 2008 Wenchuan Ms8.0 and existed abnormal value fluctuations from the 20 April 2013 Lushan Ms7.0 to 22 November 2014 Kangding Ms6.3 occurred and after 20 July 2017 returned to the normal levels. And the ion concentrations in hot springs increased by 5% to 35% three months before 22 November 2014 Kangding Ms6.3 with the obvious precursor anomaly. Hydrogeochemical anomalies could be useful for predicting an earthquake in the study area.
Hydrogeochemical Characteristic of Geothermal Water and Precursory Anomalies along the Xianshuihe Fault Zone, Southwestern China
Yucong Yan (author) / Xiaocheng Zhou (author) / Lixia Liao (author) / Jiao Tian (author) / Ying Li (author) / Zheming Shi (author) / Fengli Liu (author) / Shupei Ouyang (author)
2022
Article (Journal)
Electronic Resource
Unknown
Metadata by DOAJ is licensed under CC BY-SA 1.0
Geochemical Characteristics of Trace Elements of Hot Springs in the Xianshuihe–Xiaojiang Fault Zone
DOAJ | 2024
|Hydrogeochemical Characteristics of the Geothermal System in the Woka-Cuona Rift Zone, Tibet
DOAJ | 2024
|