A platform for research: civil engineering, architecture and urbanism
Removal Characteristics of Effluent Organic Matter (EfOM) in Pharmaceutical Tailwater by a Combined Coagulation and UV/O3 Process
A novel coagulation combined with UV/O3 process was employed to remove the effluent organic matter (EfOM) from a biotreated pharmaceutical wastewater for harmlessness. The removal behavior of EfOM by UV/O3 process was characterized by synchronous fluorescence spectroscopy (SFS) integrating two-dimensional correlation (2D-COS) and principal component analysis (PCA) technology. The highest dissolved organic carbon (DOC) and ratio of UV254 and DOC (SUVA) removal efficiency reached 55.8% and 68.7% by coagulation-UV/O3 process after 60 min oxidation, respectively. Five main components of pharmaceutical tail wastewater (PTW) were identified by SFS. Spectral analysis revealed that UV/O3 was selective for the removal of different fluorescent components, especially fulvic acid-like fluorescent (FLF) component and humus-like fluorescent (HLF) component. Synchronous fluorescence/UV-visible two-dimensional correlation spectra analysis showed that the degradation of organic matter occurred sequentially in the order of HLF, FLF, microbial humus-like fluorescence component (MHLF), tryptophan-like fluorescent component (TRLF), tyrosine-like fluorescent component (TYLF). The UV/O3 process removed 95.6% of HLF, 80.0% of FLF, 56.0% of TRLF, 50.8% of MHLF and 44.4% of TYLF. Therefore, the coagulation-UV/O3 process was proven to be an attractive way to reduce the environmental risks of PTW.
Removal Characteristics of Effluent Organic Matter (EfOM) in Pharmaceutical Tailwater by a Combined Coagulation and UV/O3 Process
A novel coagulation combined with UV/O3 process was employed to remove the effluent organic matter (EfOM) from a biotreated pharmaceutical wastewater for harmlessness. The removal behavior of EfOM by UV/O3 process was characterized by synchronous fluorescence spectroscopy (SFS) integrating two-dimensional correlation (2D-COS) and principal component analysis (PCA) technology. The highest dissolved organic carbon (DOC) and ratio of UV254 and DOC (SUVA) removal efficiency reached 55.8% and 68.7% by coagulation-UV/O3 process after 60 min oxidation, respectively. Five main components of pharmaceutical tail wastewater (PTW) were identified by SFS. Spectral analysis revealed that UV/O3 was selective for the removal of different fluorescent components, especially fulvic acid-like fluorescent (FLF) component and humus-like fluorescent (HLF) component. Synchronous fluorescence/UV-visible two-dimensional correlation spectra analysis showed that the degradation of organic matter occurred sequentially in the order of HLF, FLF, microbial humus-like fluorescence component (MHLF), tryptophan-like fluorescent component (TRLF), tyrosine-like fluorescent component (TYLF). The UV/O3 process removed 95.6% of HLF, 80.0% of FLF, 56.0% of TRLF, 50.8% of MHLF and 44.4% of TYLF. Therefore, the coagulation-UV/O3 process was proven to be an attractive way to reduce the environmental risks of PTW.
Removal Characteristics of Effluent Organic Matter (EfOM) in Pharmaceutical Tailwater by a Combined Coagulation and UV/O3 Process
Jian Wang (author) / Yonghui Song (author) / Feng Qian (author) / Cong Du (author) / Huibin Yu (author) / Liancheng Xiang (author)
2020
Article (Journal)
Electronic Resource
Unknown
Metadata by DOAJ is licensed under CC BY-SA 1.0
Contribution of Wastewater Effluent Organic Matter (EfOM) to Drinking Water DBP Precursors
British Library Conference Proceedings | 2006
|British Library Conference Proceedings | 2003
|Taylor & Francis Verlag | 2020
|