A platform for research: civil engineering, architecture and urbanism
Assessment of the Impacts of Land Use/Cover Change and Rainfall Change on Surface Runoff in China
Assessment of the impacts of land use/cover change (LUCC) and rainfall change on surface runoff depth can help provide an understanding of the temporal trend of variation of surface runoff and assist in urban construction planning. This study evaluated the impacts of LUCC and rainfall change on surface runoff depth by adopting the well-known Soil Conservation Service-Curve Number (SCS-CN) method and the widely used Long-Term Hydrologic Impact Assessment (L-THIA) model. National hydrologic soil group map of China was generated based on a conversion from soil texture classification system. The CN values were adjusted based on the land use/cover types and soil properties in China. The L-THIA model was configured by using the adjusted CN values and then applied nationally in China. Results show that nationwide rainfall changes and LUCC from 2005 to 2010 had little impact on the distribution of surface runoff, and the high values of runoff depth were mainly located in the middle and lower reaches of the Yangtze River. Nationally, the average annual runoff depths in 2005, 2010 and 2015 were 78 mm, 83 mm and 90 mm, respectively. For the 2015 land use data, rainfall change caused the variation of surface runoff depth ranging from −203 mm to 476 mm in different regions. LUCC from 2005 to 2015 did not cause obvious change of surface runoff depth, but expansion of developed land led to runoff depth increases ranging from 0 mm to 570 mm and 0 mm to 742 mm from 2005 to 2010 and 2010 to 2015, respectively. Potential solutions to urban land use change and surface runoff control were also analyzed.
Assessment of the Impacts of Land Use/Cover Change and Rainfall Change on Surface Runoff in China
Assessment of the impacts of land use/cover change (LUCC) and rainfall change on surface runoff depth can help provide an understanding of the temporal trend of variation of surface runoff and assist in urban construction planning. This study evaluated the impacts of LUCC and rainfall change on surface runoff depth by adopting the well-known Soil Conservation Service-Curve Number (SCS-CN) method and the widely used Long-Term Hydrologic Impact Assessment (L-THIA) model. National hydrologic soil group map of China was generated based on a conversion from soil texture classification system. The CN values were adjusted based on the land use/cover types and soil properties in China. The L-THIA model was configured by using the adjusted CN values and then applied nationally in China. Results show that nationwide rainfall changes and LUCC from 2005 to 2010 had little impact on the distribution of surface runoff, and the high values of runoff depth were mainly located in the middle and lower reaches of the Yangtze River. Nationally, the average annual runoff depths in 2005, 2010 and 2015 were 78 mm, 83 mm and 90 mm, respectively. For the 2015 land use data, rainfall change caused the variation of surface runoff depth ranging from −203 mm to 476 mm in different regions. LUCC from 2005 to 2015 did not cause obvious change of surface runoff depth, but expansion of developed land led to runoff depth increases ranging from 0 mm to 570 mm and 0 mm to 742 mm from 2005 to 2010 and 2010 to 2015, respectively. Potential solutions to urban land use change and surface runoff control were also analyzed.
Assessment of the Impacts of Land Use/Cover Change and Rainfall Change on Surface Runoff in China
Fazhi Li (author) / Jingqiu Chen (author) / Yaoze Liu (author) / Peng Xu (author) / Hua Sun (author) / Bernard A. Engel (author) / Shizhong Wang (author)
2019
Article (Journal)
Electronic Resource
Unknown
Metadata by DOAJ is licensed under CC BY-SA 1.0
Effect of Temporal-Based Land Use–Land Cover Change Pattern on Rainfall Runoff
Springer Verlag | 2019
|Modeling Rainfall-Runoff Response to Land Use and Land Cover Change in Rwanda (1990–2016)
DOAJ | 2017
|Elsevier | 2018
|Impact of land cover and land use change on runoff characteristics
Online Contents | 2015
|