A platform for research: civil engineering, architecture and urbanism
Removal of Organoselenium from Aqueous Solution by Nanoscale Zerovalent Iron Supported on Granular Activated Carbon
Nanoscale zerovalent iron particles (nZVI) immobilized on coconut shell-based granular activated carbon (GAC) were studied to remove organoselenium from wastewater. A chemical reduction technique that involves the application of sodium borohydride was adopted for the adsorbent preparation. The texture, morphology and chemical composition of the synthesized adsorbents were analyzed with a scanning electron microscope (SEM), nitrogen adsorption–desorption isotherms and X-ray diffraction (XRD). Batch experiment with various pHs and contact times were conducted to evaluate nZVI/GAC adsorption performance. The results showed that nZVI/GAC has a strong affinity to adsorb selenomethionine (SeMet) and selenocysteine (SeCys) from wastewaters. The maximum removal efficiency for the composite (nZVI/GAC) was 99.9% for SeCys and 78.2% for SeMet removal, which was significantly higher than that of nZVI (SeCy, 59.2%; SeMet, 10.8%). The adsorption kinetics were studied by pseudo-first-order (PFO) and pseudo-second-order (PSO) kinetic models. Amongst the two, PSO seemed to have a better fit (SeCy, R2 > 0.998; SeMet, R2 > 0.999). The adsorption process was investigated using Langmuir and Freundlich isotherm models. Electrostatic attraction played a significant role in the removal of organoselenium by nZVI/GAC adsorption. Overall, the results indicated that GAC-supported nZVI can be considered a promising and efficient technology for removing organoselenium from wastewater.
Removal of Organoselenium from Aqueous Solution by Nanoscale Zerovalent Iron Supported on Granular Activated Carbon
Nanoscale zerovalent iron particles (nZVI) immobilized on coconut shell-based granular activated carbon (GAC) were studied to remove organoselenium from wastewater. A chemical reduction technique that involves the application of sodium borohydride was adopted for the adsorbent preparation. The texture, morphology and chemical composition of the synthesized adsorbents were analyzed with a scanning electron microscope (SEM), nitrogen adsorption–desorption isotherms and X-ray diffraction (XRD). Batch experiment with various pHs and contact times were conducted to evaluate nZVI/GAC adsorption performance. The results showed that nZVI/GAC has a strong affinity to adsorb selenomethionine (SeMet) and selenocysteine (SeCys) from wastewaters. The maximum removal efficiency for the composite (nZVI/GAC) was 99.9% for SeCys and 78.2% for SeMet removal, which was significantly higher than that of nZVI (SeCy, 59.2%; SeMet, 10.8%). The adsorption kinetics were studied by pseudo-first-order (PFO) and pseudo-second-order (PSO) kinetic models. Amongst the two, PSO seemed to have a better fit (SeCy, R2 > 0.998; SeMet, R2 > 0.999). The adsorption process was investigated using Langmuir and Freundlich isotherm models. Electrostatic attraction played a significant role in the removal of organoselenium by nZVI/GAC adsorption. Overall, the results indicated that GAC-supported nZVI can be considered a promising and efficient technology for removing organoselenium from wastewater.
Removal of Organoselenium from Aqueous Solution by Nanoscale Zerovalent Iron Supported on Granular Activated Carbon
Stanley Onyinye Okonji (author) / Gopal Achari (author) / David Pernitsky (author)
2022
Article (Journal)
Electronic Resource
Unknown
Metadata by DOAJ is licensed under CC BY-SA 1.0
Removal of 2-ClBP from soil-water system using activated carbon supported nanoscale zerovalent iron
Online Contents | 2016
|Removal of 2-ClBP from soil–water system using activated carbon supported nanoscale zerovalent iron
Online Contents | 2016
|Removal of decabromodiphenyl ether (BDE-209) by sepiolite-supported nanoscale zerovalent iron
Online Contents | 2015
|Removal of decabromodiphenyl ether (BDE-209) by sepiolite-supported nanoscale zerovalent iron
Springer Verlag | 2015
|