A platform for research: civil engineering, architecture and urbanism
Energy Balance Closure Problem over a Tropical Seasonal Rainforest in Xishuangbanna, Southwest China: Role of Latent Heat Flux
The unresolved energy-unclosed problem in micrometeorology refers to the fact that the sum of turbulent fluxes (sensible and latent heat fluxes, Hs and LE) monitored by eddy covariance (EC) methods tends to be lower than the available energy (net radiation (Rn), soil heat flux (G), and heat storage (S)). The lack of energy balance closure (EBC) increases evapotranspiration-measurement uncertainty. Using EC data from Xishuangbanna, a Southeast Asian tropical seasonal rainforest, we analyzed the energy distribution and closure based on micrometeorological features. We found that: (1) the EBC in the rainy season exceeds that in other seasons and that the seasonal moisture content, frictional wind velocity (u*), and LE contribute to the high seasonal variability in EBC; (2) the annual closure is approximately 65%, and energy non-closure is influenced by turbulence intensity and atmospheric stability. When the atmospheric state is unstable to near neutral, u* is greatest, and EBC can reach nearly 80%. (3) energy is mainly allocated to LE, and energy non-closure leads to LE underestimation, especially in the foggy-cool and hot-dry seasons. (4) Heat storage and large time-scale flux effects on EBC were excluded. The causes of energy non-closure in the tropical calm zone need further investigation.
Energy Balance Closure Problem over a Tropical Seasonal Rainforest in Xishuangbanna, Southwest China: Role of Latent Heat Flux
The unresolved energy-unclosed problem in micrometeorology refers to the fact that the sum of turbulent fluxes (sensible and latent heat fluxes, Hs and LE) monitored by eddy covariance (EC) methods tends to be lower than the available energy (net radiation (Rn), soil heat flux (G), and heat storage (S)). The lack of energy balance closure (EBC) increases evapotranspiration-measurement uncertainty. Using EC data from Xishuangbanna, a Southeast Asian tropical seasonal rainforest, we analyzed the energy distribution and closure based on micrometeorological features. We found that: (1) the EBC in the rainy season exceeds that in other seasons and that the seasonal moisture content, frictional wind velocity (u*), and LE contribute to the high seasonal variability in EBC; (2) the annual closure is approximately 65%, and energy non-closure is influenced by turbulence intensity and atmospheric stability. When the atmospheric state is unstable to near neutral, u* is greatest, and EBC can reach nearly 80%. (3) energy is mainly allocated to LE, and energy non-closure leads to LE underestimation, especially in the foggy-cool and hot-dry seasons. (4) Heat storage and large time-scale flux effects on EBC were excluded. The causes of energy non-closure in the tropical calm zone need further investigation.
Energy Balance Closure Problem over a Tropical Seasonal Rainforest in Xishuangbanna, Southwest China: Role of Latent Heat Flux
Yan Jin (author) / Yue Liu (author) / Jiahui Liu (author) / Xiang Zhang (author)
2022
Article (Journal)
Electronic Resource
Unknown
Metadata by DOAJ is licensed under CC BY-SA 1.0
Reasons for the Survival of Tropical Forest Fragments in Xishuangbanna, Southwest China
DOAJ | 2020
|Intercomparison of Latent Heat Flux Estimates Based on Energy Balance Models
HENRY – Federal Waterways Engineering and Research Institute (BAW) | 2010
|