A platform for research: civil engineering, architecture and urbanism
CHANGE IN WOOD STRENGTH UNDER STATIC BENDING AND COMPRESSION ALONG FIBERS IN THE PROCESS OF TREE GROWTH
According to the basic principles of bionics, internal forces are formed in the tree trunk during its growth; these forces generate the strength and resistance of the tree to influence of wind loads and its own weight. When internal forces appear, the strength of wood cells starts developing. The inflow of nutrients is the most intense in the most strained parts of the trunk. The wood responds to external effects through increasing the thickness of cell walls, their density, the modulus of elasticity, etc. The central part of the trunk starts experiencing internal compressive stresses along fibers and tensile stresses dominate the peripheral areas. The paper substantiates the relationship between the size of the core zone and the stress-strain state of wood. Under effects of internal forces the wood is formed during the growth of a tree as an anisotropic material having different tensile and compressive strengths along and across fibers. The hypothesis on parabolic distribution of internal forces along fibers is described making possible both determining the dimensions of the core and sap zones, and establishing mathematical correlation between the ultimate stress limits of wood during compression along fibers and under static bending. This was proved in numerous experimental studies made by different Russian and foreign research groups. According to calculations given in the paper, the ratio of the ultimate stress limits of wood of various species under compression along fibers to the ultimate stress limits under static bending depends on the nature of distribution of internal forces along the tree trunk. Application of computer technologies makes it possible to use the results obtained to produce sawn timber having required strength indicators.
CHANGE IN WOOD STRENGTH UNDER STATIC BENDING AND COMPRESSION ALONG FIBERS IN THE PROCESS OF TREE GROWTH
According to the basic principles of bionics, internal forces are formed in the tree trunk during its growth; these forces generate the strength and resistance of the tree to influence of wind loads and its own weight. When internal forces appear, the strength of wood cells starts developing. The inflow of nutrients is the most intense in the most strained parts of the trunk. The wood responds to external effects through increasing the thickness of cell walls, their density, the modulus of elasticity, etc. The central part of the trunk starts experiencing internal compressive stresses along fibers and tensile stresses dominate the peripheral areas. The paper substantiates the relationship between the size of the core zone and the stress-strain state of wood. Under effects of internal forces the wood is formed during the growth of a tree as an anisotropic material having different tensile and compressive strengths along and across fibers. The hypothesis on parabolic distribution of internal forces along fibers is described making possible both determining the dimensions of the core and sap zones, and establishing mathematical correlation between the ultimate stress limits of wood during compression along fibers and under static bending. This was proved in numerous experimental studies made by different Russian and foreign research groups. According to calculations given in the paper, the ratio of the ultimate stress limits of wood of various species under compression along fibers to the ultimate stress limits under static bending depends on the nature of distribution of internal forces along the tree trunk. Application of computer technologies makes it possible to use the results obtained to produce sawn timber having required strength indicators.
CHANGE IN WOOD STRENGTH UNDER STATIC BENDING AND COMPRESSION ALONG FIBERS IN THE PROCESS OF TREE GROWTH
Vladimir Glukhikh (author)
2017
Article (Journal)
Electronic Resource
Unknown
Metadata by DOAJ is licensed under CC BY-SA 1.0
Relation on microscopic compression creases and crack of wood under static cyclic bending load
British Library Online Contents | 1994
|Study on the Static-Bending Properties of Surface-Reinforced Wood with Asymmetric Fibers
DOAJ | 2023
|