A platform for research: civil engineering, architecture and urbanism
Forest effects on runoff under climate change in the Upper Dongjiang River Basin: insights from annual to intra-annual scales
Climate change and large-scale afforestation characterize the conditions in the Upper Dongjiang River Basin (UDRB), which is one of the most important headwater basins in southern China. It is important to understand whether, and to what extent, the observed runoff change can be attributed to forest and/or climate change. Using process- and relation-based methods, we found precipitation in spring (March–May) decreased notably, while precipitation in summer (June–August) showed an increase from the reference period (1961–1990) to the afforestation period (1991–2010). In comparison, annual averaged potential evapotranspiration did not change much. Both of the methods indicated forest had a positive effect while climate change exerted a negative impact on annual averaged runoff in the UDRB. As a result, the observed annual averaged runoff only showed a little decrease from the reference period to the afforestation period. The climate change impact on monthly averaged runoff basically followed the pattern of precipitation change. Except in July and August, climate change exerted negative or little impact on runoff in most of other months. In comparison, the forest effects on monthly averaged runoff change showed a totally different pattern. Except in May and June, forest exerted positive impact on runoff in other months. As a result, the observed monthly averaged runoff in May and June experienced notable reduction, while those in other months experienced increase or no change. The UDRB provides evidence that additional forest cover would not injure but even increase runoff, especially dry season runoff. The study has important implications for sustainable water management and afforestation in this subtropical region and for similar river basins.
Forest effects on runoff under climate change in the Upper Dongjiang River Basin: insights from annual to intra-annual scales
Climate change and large-scale afforestation characterize the conditions in the Upper Dongjiang River Basin (UDRB), which is one of the most important headwater basins in southern China. It is important to understand whether, and to what extent, the observed runoff change can be attributed to forest and/or climate change. Using process- and relation-based methods, we found precipitation in spring (March–May) decreased notably, while precipitation in summer (June–August) showed an increase from the reference period (1961–1990) to the afforestation period (1991–2010). In comparison, annual averaged potential evapotranspiration did not change much. Both of the methods indicated forest had a positive effect while climate change exerted a negative impact on annual averaged runoff in the UDRB. As a result, the observed annual averaged runoff only showed a little decrease from the reference period to the afforestation period. The climate change impact on monthly averaged runoff basically followed the pattern of precipitation change. Except in July and August, climate change exerted negative or little impact on runoff in most of other months. In comparison, the forest effects on monthly averaged runoff change showed a totally different pattern. Except in May and June, forest exerted positive impact on runoff in other months. As a result, the observed monthly averaged runoff in May and June experienced notable reduction, while those in other months experienced increase or no change. The UDRB provides evidence that additional forest cover would not injure but even increase runoff, especially dry season runoff. The study has important implications for sustainable water management and afforestation in this subtropical region and for similar river basins.
Forest effects on runoff under climate change in the Upper Dongjiang River Basin: insights from annual to intra-annual scales
Zehua Li (author) / Ping Zhou (author) / Xiaogang Shi (author) / Yongkun Li (author)
2020
Article (Journal)
Electronic Resource
Unknown
Metadata by DOAJ is licensed under CC BY-SA 1.0
Taylor & Francis Verlag | 2018
|Hydrological simulation of the East River basin (Dongjiang) in China
British Library Conference Proceedings | 2005
|